
Nonlinear System Identification using Opposition Based Learning Differential
Evolution and Neural Network Techniques

Bidyadhar Subudhi, Senior Member, IEEE, and Debashisha Jena

Center for Industrial Electronics and Robotics, Dept. of Electrical Engineering
 National Institute of Technology, Rourkela, India-769008

E-mail: bidyadharnitrkl@gmail.com

Abstract
The slow convergence and local minima problems
associated with neural networks (NN) used for non-linear
system identification have been resolved by evolutionary
techniques such as differential evolution (DE) combined
with Levenberg Marquardt (LM) algorithm. In this work
the authors attempted further to employ an opposition
based learning in DE, known as opposition based
differential evolution (OBDE) for training neural
networks in order to achieve better convergence of DE.
The proposed OBDE together with DE and neuro-fuzzy
(NF) approaches to non-linear system identification has
been applied for identification of two non-linear system
benchmark problems. Results presented clearly
demonstrate that the OBDE-NN method of non-linear
system identification provides excellent identification
performance in comparison to both the DE and NF
approaches.

Keywords: Back Propagation, Differential evolution,
Evolutionary computation, Nonlinear System Identification,
Neuro-fuzzy, Opposition based differential evolution

1. Introduction
System identification is widely used in a number of
applications such as in control system [1],
communication [2], signal processing [3], chemical
process control [4] and biological processes [5] etc. In the
strict sense, all the real-world problems are nonlinear in
nature. It is pertinent that there is less computational
difficulty encountered for identification of a linear
system. However, in the nonlinear system identification,
the scenario is not straightforward. There are some
classical parameterized models such as Voltera series [6],
Winner-Hammerstein model [7] and polynomial
identification methods [8, 9] which provide a reasonable
degree of accuracy but these methods involve
computational complexities. Subsequently, neural
networks have been extensively used for modeling
complex system dynamics in a systematic approach
especially those which are hard to be described
mathematically. It has been proved that any continuous
function can be approximated by a feed-forward neural
network trained with back-propagation learning
algorithm to a reasonable degree of accuracy [10]. This
function approximation property can be exploited to
model a number of complex systems. Narendra and
Parthasarathy [11] have shown that multilayer neural
networks trained with standard back-propagation

algorithm can be used effectively for the identification of
nonlinear dynamical systems. Subsequently the local
minima problems encountered in these have been
overcome to a reasonable extent exploiting evolutionary
approaches to train neural networks and these networks
are known as evolving neural networks.

Research on designing evolutionary neural networks has
progressed significantly by combing several variants of
evolutionary algorithms such as genetic algorithm (GA),
genetic programming (GP) and particle swarm
optimization (PSO) with neural networks [12].
Differential evolution is an effective, efficient and robust
optimization method capable of handling nonlinear and
multimodal objective functions. The advantages of DE are
many such as it is simple and has compact structure which
uses a stochastic direct search approach and utilizes
common concepts of EAs. Furthermore, DE uses few easily
chosen parameters and provides excellent results for a wide
set of benchmark and real-world problems [13, 14].
DE+LM+NN nonlinear system identification has been
developed earlier by the authors [15] where, DE and LM
have been used in a combined framework to train a neural
network for achieving faster convergence of neural network
weight optimization. To improve the performance of DE
trained NN further, the authors propose in this paper a
new training method of NN by using the concept of
opposition based learning (OBL) in DE. This new
nonlinear system identification scheme is called OBDE-
NN.

The concept of opposition-based learning (OBL) was
first introduced by Tizhoosh [17]. It usually applied to
accelerate reinforcement learning [18] and back-
propagation learning in neural networks [19]. The main
idea behind OBL is the simultaneous consideration of an
estimate and its corresponding opposite estimate (i.e.,
guess and opposite guess) in order to achieve a better
approximation for the current candidate solution. In this
paper, OBL has been exploited to accelerate the
convergence rate of DE. Hence, the proposed approach is
called opposition-based differential evolution (OBDE).
OBDE uses opposite numbers during population
initialization and also for generating new populations
during the evolutionary process. Here opposite numbers
have been utilized to speed up the convergence rate of an
optimization algorithm. It may be noted that selection of
solutions based on purely random initialization gives rise
to problem of visiting or even revisiting unproductive
search regions. The chance of the above problem
occurring can be resolved by using opposite numbers

1
 ICS Journal March 2009

instead of using purely random numbers for initialization
of populations. In fact, a mathematical proof has already
been proposed to show that, opposite numbers are more
likely to be closer to the optimal solution than purely
random ones [20]. In [21], the usefulness of opposite
numbers is investigated by replacing them with random
numbers and it is applied for population initialization and
generation jumping for different versions of DE.

 However, a little work has been reported on applying
OBDE to system identification and its use in training
neural network for nonlinear system identification.
Therefore, we present in this paper an opposition based
differential evolution for training a feed-forward neural
network used as a nonlinear system identifier.

Nonlinear system as considered in [22, 23] has been
chosen in this work for demonstrating the effectiveness
of the proposed OBDE-NN system identification
approach compared to DE-NN and NF approach. In this
work, an opposition based differential evolution method
combined with LM has been applied as a global
optimization method for training a feed-forward neural
network. In the proposed scheme, the OBDE is used to
train the neural network that is chosen as a suitable
candidate for nonlinear system identification. After
observing the trends of training towards minimum
through OBDE, the network is then trained by LM. The
role of the OBDE here is to approach towards global
minimum point and then LM is used to move forward
achieving fast convergence. According to the proposed
algorithm, after reaching the basin of global minimum,
the algorithm is switched from global search of the
evolutionary algorithm (OBDE) to local search, LM. In
opposition based differential evolution, at the moment of
starting, the differential term is very high. As the solution
approaches to global minimum, the differential term
automatically changes to a low value. So during the
initial period, the convergence speed is faster and the
search space is very large but in latter stages nearer to the
optimum as the differential term is small, the algorithm
becomes slower which will take more time to converge.
As LM is a gradient based algorithm it can be exploited
to increase the convergence speed of the neural network
training algorithm for reaching the global minimum.

2

The main contributions of the paper are as follows:

• Designing of OBDE-NN scheme to accelerate
the convergence of DE used for non-linear
system identification.

• LM has been integrated with the OBDE to
enable faster search process for achieving faster
convergence.

• The identification performance of the proposed
OBDE-NN scheme has been compared with the
DE-NN and NF approaches to nonlinear system
identification and found to be better than the
later.

The paper is organized as follows. Section 2 reviews the
NNarchitecture. Section 3 presents the neuro-fuzzy

technique in system identification followed by a brief
review on the differential evolution technique in section
4. Subsequently in section 5 and 6 we describe the
proposed differential evolution combined with neural
network approach to nonlinear system identification.
Finally the paper discusses the results of all the aforesaid
techniques in section 7 to arrive at conclusions.

2. The NN Architecture
In case of MLPNN architecture, one hidden layer is
sufficient to guarantee the universal approximation
feature. Fig 2 illustrates this kind of network.

∑

y k 1

y k i

y k 2

u[k]

u[k-1]

u[k-p]

y[k]

y[k-1]

y[k-p]

bias b1 b ias b 2

ŷ

Fig.1 NN identifier with external dynamics

The input vector dimension depends on the system order.
The following two equations describe the signal
propagation from input layer to output layer.

1 1(hy W vψ)b= + (1)

2ˆ (T
h 2)y W y bψ= + (2)

where is the output from the hidden units, is the hy
1W

weight matrix of the first layer, is the weight of the
2W

output layer v is the regression vector of inputs, is 1b
the bias for hidden units, is the bias for output units 2b
and ψ is the nonlinear function which we have taken as a
sigmoid function as these are easier to train compared to
many other activation functions such as hard limiter etc.
Moreover, with sigmoid units, a small change in the
weights will usually produce a change in the outputs,
which makes it possible to tell whether that change in the
weights is good or bad.

3. A Review on Neuro-Fuzzy Technique
for Nonlinear System Identification

Neuro-fuzzy [NF] technique is a very popular system
modeling paradigm used for obtaining models of many
complex nonlinear systems. Although this technique is
described in many books and papers [24, 25] but we
describe it here in brief for completeness. Fig.3 shows a
well known neuro-fuzzy modeling structure [24, 25]. In
neuro-fuzzy modeling technique (Fig.2) there are five
layers with the following characteristics.

ICS Journal March 2009

3

Fig.2 Neuro-fuzzy technique

In layer 1, each adaptive node i has node function
defined as:

1,

1, 2

() for 1,2,or

() for 3,4
i

i

i C i

i D i

O x i

O y i

μ

μ −

= =

= =

where (x or y) is the input to node i and (oriC 2iD −
) is a

linguistic label associated with this node. Here, the node
function of the i-th node is considered as a generalized
bell shaped membership function given by

2
1()

1
i iC b

i

i

x
x c

a

μ =
−

+

 (3)

where {ai, bi, ci} are the parameter set that changes the
shapes of the membership function. Parameters in this
layer are the premise parameters.

In layer 2, represents a fixed node and each of the node
calculates the firing strength of a fuzzy as follows

2, (). () , 1,2
i ii i C DO w x y iμ μ= = = (4)

In layer 3, the fixed node i calculates the ratio of the i-th
rule’s firing strength () to the total of all firing
strength as:

iw

2,1,
21

,3 =
+

== i
ww

wwO i
ii (5)

The output of layer-3 given in equation (5) denotes the
normalized firing strength (iw)

In layer 4, the adaptive node I, computes the contribution
of i-th rule towards the overall output with the following
node function:

4, ()i i i i i i iO w z w p x q y r= = + + (6)

where are Known as the consequent
parameters of the rule.

),,(iii rqp

The single fixed node in layer 5 computes the overall
output as the summation of signal contributions from
each rule:

5,

i i
i

i i i
i i

i

w z
O w z

z
=

∑
∑ ∑

 (7)

The basic learning rule adopted in this neuro-fuzzy
modeling technique is the back propagation gradient
descent, which calculates error signals (the derivative of
the squared error with respect to each node’s output)
recursively from the output layer backward to the input
nodes. This learning rule is exactly the same as the back
propagation learning rule used in the feed-forward neural
networks.

The overall output z can be expressed as linear
combinations of the consequent parameters:

1 2 1 1

2 2 2

() () ()
() () ()

i i i i i

i i i

1z w z w z w x p w y q w r
w x p w y q w r
= + = +

+ + +
 (8)

4. Differential Evolution Technique
The differential evolution technique is capable of
handling non-differentiable, non-linear and multimodal
objective functions [13, 14]. It has been used to train
neural networks having real and constrained integer
weights. In a population of potential solutions within a d-
dimensional search space, a fixed number of vectors are
randomly initialized, then evolved over time to explore
the search space and to locate the minima of the objective
function.

At each generation new vectors are generated by the
combination of vectors randomly chosen from the current
population (mutation). The out coming vectors are then
mixed with a predetermined target vector. This operation
is called recombination and produces the trial vector.
Finally, the trial vector is accepted for the next generation
if and only if it yields a reduction in the value of the
objective function. This last operator is referred to as a
selection. There are many different variants of DE [13],
the variants are

• DE/best/1/exp
• DE/rand/1/exp
• DE/rand-to-best/1/exp
• DE/best/2/exp
• DE/rand/2/exp

Now we explain the working steps involved in employing
a DE cycle.

Step 1: Parameter setup
Choose the parameters of population size, the boundary
constraints of optimization variables, the mutation factor
(F), the crossover rate (C), and the stopping criterion of
the maximum number of generations (g).

Step 2: Initialization of the population
Set generation g=0. Initialize a population of i=1, P
individuals (real-valued d-dimensional solution vectors)
with random values generated according to a uniform
probability distribution in the d dimensional problem
space. These initial values are chosen randomly within
user’s defined bounds.

ICS Journal March 2009

Step 3: Evaluation of the population
Evaluate the fitness value of each individual of the
population. If the fitness satisfies predefined criteria save
the result and stop, otherwise go to step 4.

Step 4: Mutation operation (or differential operation)
Mutation is an operation that adds a vector differential to
a population vector of individuals. For each target vector

,i gx a mutant vector is produced using the following
relation,

1 2, , , ,(i g r g r g r gv x F x x= + −

4

3
) (9)

In Eqn. (10), F is the mutation factor, which provides
the amplification to the difference between two
individuals so as to avoid search
stagnation and it is usually taken in the range of [0, 1],
where

2 3, ,(r g r gx x)−

{ }1 2 3,r r, , 1, 2,......i r P∈ are randomly chosen

numbers but they must be different from each other. P is
the number of population.

Step 5: Recombination operation
Following the mutation operation, recombination is
applied to the population. Recombination is employed to
generate a trial vector by replacing certain parameters of
the target vector with the corresponding parameters of a
randomly generated donor (mutant) vector. There are two
methods of recombination in DE, namely, binomial
recombination and exponential recombination.

In binomial recombination, a series of binomial
experiments are conducted to determine which parent
contributes which parameter to the offspring. Each
experiment is mediated by a crossover constant, C, (0 ≤ C
<1). Starting at a randomly selected parameter, the source
of each parameter is determined by comparing C to a
uniformly distributed random number from the interval
[0, 1) which indicates the value of C can exceed the value
1. If the random number is greater than C, the offspring
gets its parameter from the target individual; otherwise,
the parameter comes from the mutant individual. In
exponential recombination, a single contiguous block of
parameters of random size and location is copied from
the mutant individual to a copy of the target individual to
produce an offspring. A vector of solutions are selected
randomly from the mutant individuals when

(, is a random number) is less than C.
jrand

[1,0∈jrand]
, ,

, ,
, ,

i f () o r

o th e rw is e
j i g j r a n d

j i g
j i g

v r a n d C j j
t

x

≤ =⎧⎪= ⎨
⎪⎩

 (10)

1 , 2j d= , where d is the number of parameters
to be optimized.
Step 6: Selection operation
Selection is the procedure of producing better offspring.
If the trial vector, has an equal or lower value than

that of its target vector,
,i gt

,i gx it replaces the target vector

in the next generation; otherwise the target retains its
place in the population for at least one more generation.

, , ,
, 1

,

, () ()

,
i g i g i g

i g
i g

t i f f t f x
x

x o th erw ise+

≤⎧⎪= ⎨
⎪⎩

 (11)

Once new population is installed, the process of
mutation, recombination and selection is replaced until
the optimum is located, or a specified termination
criterion is satisfied, e.g., the number of generations
reaches a predefined maximum . maxg
At each generation, new vectors are generated by the
combination of vectors randomly chosen from the current
population (mutation). The upcoming vectors are then
mixed with a predetermined target vector. This operation
is called recombination and produces the trial vector.
Finally, the trial vector is accepted for the next generation
if it yields a reduction in the value of the objective
function. This last operator is referred to as a selection.
The most commonly used method for validation is to
utilize the root mean-squared error (RMSE) between the
actual output y(n) of the system and the predicted output
ˆ()y n . In this work we have taken the cost function as

root mean squared error (RMSE)

i.e. []2
1

1 (,)
N

k

f
N =

= −∑E y x w , where N is the number of data

considered. The block diagram and pseudo code for DE
are given in Fg.4 and Fig.5 respectively.

ICS Journal March 2009

 Set the parameters F, C, P and gmax

If f < ε

or

g > g max

Save Results and stop

Initialize population i=1

Mutate to have a trial vector

1 2 3, , , ,()i g r g r g r gv x F x x= + −

Crossover x with v to generate new individual

, ,
, ,

, ,

if ()or

otherwise
j i g j rand

j i g
j i g

v rand C j j
t

x

≤ =⎧⎪=⎨
⎪⎩

, ,() ()i g i gf t f x≤

, 1i gx + = ,i gt , 1i gx + = ,i gx

P=population size?

Yes

Yes
No

i=i+1 g=g+1

Generate initial population randomly within
the search range. g=0

No Yes

No

5

Fig. 3 Block diagram for DE algorithm

5. Opposition based Differential Evolution

Generally in all evolutionary algorithm approaches, a
uniform random guess is considered for initial
population. As the search process progresses, the
solutions obtained move towards the optimal value. It
may be noted that in the case of random guess, when the
distance between the initial guess and final optimal
solution is more the algorithm takes more time to reach
the optimal value and vice-versa. However Opposition
based learning improves the chance of starting with better
initial population by checking the opposite solutions. As
the initial guess is always random, by looking into the
opposite direction and starting with the closer of the two
guesses (as judged by the fitness value) the algorithm
accelerates towards convergence. The same approach can be
applied not only to initial solutions but also applied
continuously to each solution in the current population.
However, before concentrating on OBL, we need to
define the concept of opposite numbers [17].

 Definition of opposite number:

Let [,]x a b∈ be a real number. The opposite number is
x which is defined by x a b x= + −

 Definition of opposite point:
Let 1 2(,)dp x x x= be a point in the D dimensional

space where 1 2, dx x x R∈ and [,]i i ix a b∈ . The

opposite point 1 2(,)dp x x x= where

i i i ix a b x= + −
 Opposition based optimization:

Let 1 2(,)dp x x x= be a point in the D dimensional

i.e. a candidate solution. Assume (.)f is the fitness
function which is used to measure the candidate’s fitness.
According to the definition of the opposite point

1 2(,)dp x x x= is the opposite of

1 2(,)dp x x x= . Now if () (f)p f p≥

,

D

then point

can be replaced by otherwise we will continue
with . Hence the point and its opposite point are
evaluated simultaneously in order to continue with the fit
one.

p p
p

Development of Proposed OBDE Algorithm

Similar to all other variants of evolutionary computing
techniques DE also employs two main steps namely
population initialization and application of evolutionary
operations (mutation, crossover and selection) for
producing new generations of populations. We will
enhance these two steps using the OBL scheme. The
original DE is chosen as a parent algorithm and the
proposed opposition-based ideas are embedded in DE to
accelerate its convergence speed. In OBDE the first step
follows an opposition based population initialization
where as the second step considers an opposition based
generation jumping. Corresponding block diagram and
pseudo code for the proposed approach (OBDE) is given
in Fig. 6 and Fig.7 respectively.

Opposition-Based Population Initialization

In all population based algorithms owing to the absence
of a-priori knowledge on solutions, a set of candidate
solutions (populations) are usually initialized as random
numbers. But this evolution process takes more time as
said earlier. Hence by utilizing OBL, we can obtain fitter
starting candidate solutions even when there is no a
priori knowledge about the solution(s). To implement
OBL based population initialization we create a
population pop and then applying the formula given in
equation (14), we get the opposite population.

,i j j j i jo p o p a b p o p= + − (12)
1 , 2 , 1 , 2 ,i P j= =

where popi,j and opopi,j denote the jth variable of the ith
vector of the population and opposite population
respectively. Select P fittest individual from the total

ICS Journal March 2009

population of pop and opop i.e. (pop U opop) as initial
population, where U stands for union.

6

Opposition-Based Generation Jumping

Generation jumping decides whether the current
population will follow all the steps as in opposition based
population initialization procedure or directly jumps to
the next generation. This can be implemented by using a
jumping probability (jumping rate), Jr. If the jumping rate
exceeds a random number that is generated in the current
generation then the population will jump to the next
generation directly as shown in Fig.6. Thus, the
computation can be saved and algorithm becomes faster.
Based on this jumping rate, after generating new
population by mutation, crossover, and selection, the
opposite population is calculated and P fittest individuals
are selected from the union of the current population and
the opposite population. Instead of using variables’
predefined interval boundaries generation jumping
calculates the opposite of each variable based on
minimum and maximum values of that variable in the
current population which is given in equation (13).

, , min () max () - i j j j i jonpop npop npop npop= +

 Set the parameters F, C, P and gmax

If f <
or

g > g max

ε
Save Results and stop

Initialize population i=1

Mutate to have a trial vector

1 2 3, , , ,()i g r g r g r gv x F x x= + −

Crossover x with v to generate new individual

, ,
, ,

, ,

if () or

otherw ise
j i g j rand

j i g
j i g

v rand C j j
t

x

≤ =⎧⎪= ⎨
⎪⎩

, ,() ()i g i gf t f x≤

, 1igx + = ,i gt , 1igx + = ,i gx

P=population size?

Yes

Yes No

i=i+1

g=g+1

Generate initial population randomly within the search range

No

Yes

No

Calculate opposition based population npop

Find out P fittest individual from (pop U npop) , generation
g=0

Calculate opposition based individuals

Find out P fittest individual population.

 g=gmax ?

No

Yes

Save Results and Stop

 randj< Jr?

Yes

 (13)
Thus, generation jumping calculates the opposite
population dynamically.

Fig. 4 Block diagram for DE algorithm

ICS Journal March 2009

/*Initialization of opposition based population*/
Generate a initial random population ipop
for (i=0; i<P; i++)
for (j=0; j<D; i++)
iopopi,j =aj+bj – popi,j

Select P fittest individual from the set (ipop,iopop) as
initial population
While (convergence criterion not yet met)
{

// ,i gx defines a vector of the current vector

population

// , 1i gx + defines a vector of the new vector population

in the next generation
for (i=0; i<P; i++)
{
r1 = rand (P); //select a random index from 1, 2, P
r2 = rand (P); //select a random index from 1, 2, P
r3 = rand (P); //select a random index from 1, 2, P

1 2 3, , , ,()i g r g r g r gv x F x x= + −

/* opposition based mutation starts*/
Store in mutation population mpop
ompopi,j=min(mpop j)+ max(mpop j) – mpopi,j
Select P fittest individual from the set (mpop i,j,
ompopi,j) which is denoted by ov
/* opposition based mutation ends*/

, ,
, ,

, ,

i f () o r

o th e r w is e
j i g j ra nd

j i g
j i g

o v ra n d C j j
t

x

≤ =⎧⎪
= ⎨
⎪⎩

if , ,() ()i g i gf t f x≤

, 1i gx + = ,i gt

}
else
{

, 1i gx + = ,i gx

}
}
}//end % while
Initialize the weight matrix of Levenberg-Marquardt
algorithm taking the values of weights obtained after
the fixed number of iterations.
Initialize Weights;
while not meet the Stop Criterion do

Calculates ()pe w for each pattern;

1
1

() ()
P

p T p

p
e e w e w

=

=∑

Calculates ()pJ w for each pattern;

Repeat

Calculate wΔ ;

2
1

() ()
P

p T p

p
e e w w e w w

=
= + Δ + Δ∑ ;

if 1 2e e≤ then

μ μβ=

End %if

until 2 1()e e< ;

/μ μ β=

w w w= + Δ
end %while

6. A Combined OBDE-NN Approach to
System Identification
Here, we describe how an OBDE is applied for training a
neural network in the framework of system identification
(see pseudo code in Fig.5). According to the proposed
algorithm, the value of the cost function after reaching a
particular value of ε , the algorithm is switched from
global search such of the evolutionary algorithm (OBDE)
to local search, LM. In opposition based differential
evolution, at the moment of starting, the differential term
is very high. As the solution approaches to global
minimum the differential term automatically changes to a
low value. So at initial period the convergence speed is
faster and search space is very large but in latter stages
nearer to the optimum due to small differential term the
algorithm becomes slower which will take more time to
converge. As LM is a gradient based algorithm at that
point the role of LM is to increase the convergence speed
for reaching the global minimum. OBDE can be applied
to global searches within the weight space of a typical
feed-forward neural network. Output of a feed-forward
neural network is a function of synaptic weights w and
input values , i.e. . The role of LM in the
proposed algorithm has been described in section I. In the
training processes, both the input vector x and the output
vector

x),(wxy f=

y are known and the synaptic weights in w are
adapted to obtain appropriate functional mappings from
the input x to the output .y Generally, the adaptation
can be carried out by minimizing the network error
function which is of the form . In this
work we have taken E as root mean squared error

i.e.

E)),(xf,(wyE

[]

7

2

1

(,)f= −E y x w1 N

kN =
∑

where N is the number of data considered. The
optimization goal is to minimize the objective function

 by optimizing the values of the network weights, w ,
where,
E

1(, ,)dw w=w

Pseudo code (OBDE-NN Identification
Algorithm)

Fig. 5 Pseudo code of OBDE-NN identification scheme

ICS Journal March 2009

7. Problem Formulation
Results for Example 1:

Example: 1 (A Benchmark Nonlinear System) We have chosen 11 numbers of neurons in the hidden
layer by trial and error so as to obtain the best results.
This is explained as follows. We have tried for more no
of neurons for the same problem which takes large
computational time without achieving appreciable
amount of accuracy. After 500 epochs, the training of the
neural identifier has been stopped. After the training is
over, the identifier’s prediction ability has been tested for
the input given as follows.

We will consider the non-linear system [22, 23] to verify
our system identification algorithm given by

2 2

()[(1) 2][() 2.5]
(1) ()

8.5 [()] [(1)]
p p p

p
p p

y t y t y t
y t u t

y t y t
− + +

+ = +
+ + −

 (14)

where is the output of the system at the t()py t th time
step and u(t) is the plant input which is uniformly
bounded function of time. The plant is stable at u(t)∈[-2
2] i.e. the input signal u(t) is bounded in the region [-2 2].
The identification model be in the form of

22cos if 200
100

()
21.2sin if 200 500
20

t t
u t

t t

π

π

⎧ ⎛ ⎞ ≤⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ < ≤⎜ ⎟⎪ ⎝ ⎠⎩

 (16)
(1) ((), (1)) (pi p p)y t f y t y t u+ = − + t (15)

where is the nonlinear function

of
((), (1))p pf y t y t −

 ()py t and which will be the inputs for DE-NN
and OBDE-NN neural system identifier. The output from
neural network will be . The goal is to train the
neural networks used to identify the above system such
that when an input u(t) is presented to the network and to
the nonlinear system, the network outputs

(1)py t −
Figures 6, 7 give the identification performances of the
three identification schemes discussed before namely,
DE-NN, OBDE-NN and NF schemes.

(1)piy t +

0 100 200 300 400 500 600
-4

-2

0

2

4

6

8

10

T ime step

Pl
an

t o
ut

pu
t

NF
Actual
OBDE

 D E

(1)piy t + and

the actual system output (1)py t + should be as close as
possible i.e. the identified system output should follow
the actual system output.

Example 2 (Box and Jenkins’ Gas Furnace System)
[23]:

Box and Jenkins’ gas furnace data are frequently used in
performance evaluation of system identification methods.
Given the recorded input–output samples i.e. the input
variables as the gas flow u(t), and one output variable, the
concentration of carbon dioxide (CO

Fig. 6 Comparison of identification performance of OBDE-NN, DE-NN

and NF approaches

8

2), y (t)., the
objective is to obtain a model of this gas combustion
process using neural network identification approaches.

94 96 98 100 102 104 106 108 110
7.8

8

8.2

8.4

8.6

Time step

P
la

nt
 o

ut
pu

t

 NF
Actual
OBDE
DE

8. Results and Discussion

We present in the system identification results obtained
with different approaches such as DE-NN, OBDE-NN
and NF applied to the system given in equation (16) and
Box Jenkins, Gas furnace problem [23]. In all our
simulation studies we have used MATLAB software for
coding. The parameters considered for simulation of
OBDE-NN and DE-NN schemes are given in Table-1

Fig. 7 Comparison of identification performance of OBDE-NN, DE-NN

and NF approaches (for the time step 92-112)

()y tFigure 6 compares the actual output , and identified
plant output y t within the time step of 0 to 500. As
the identification performances shown in Figure 6 are
overlapping each other, in Figure 7 we have shown the
results within the time step of 92 to112. From this it is
clear that the proposed OBDE-NN exhibits better
identification ability compared to DE-NN and NF
approaches.

Table-1 Parameters for DE-NN and OBDE-NN ˆ()

Population size, P 50
Upper and lower bound of weights [0 1]
Mutation constant factor , F 0.6
Crossover constant, C 0.5
Random number, J 0.3 r

ICS Journal March 2009

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

Time step

M
od

el
in

g
er

ro
r (

N
F)

0 50 100 150 200 250 300 350 400 450 500

0.02

0.025

0.03

0.035

Number of epochs

R
M

S
E

NF
DE
OBDE

Fig. 8 Comparison of training RMSE for OBDE-NN, DE-NN and NF

approaches
Fig. 11 NF Identification error

Figures 9, 10 and 11 show the identification errors for all
the three approaches i.e. OBDE-NN, DE-NN and NF. It
is seen that the error is the least in the case of OBDE-NN
amongst the three cases.

Figure 8 shows that in NF based identification, the
RMSE is less than DE-NNand OBDE-NN cases. Due to
the over fitting of the weights of the neural network the
the testing RMSE for NF scheme is not minimum even if
the training RMSE is minimum. This can be analysed
from the numerical values given in Table-2 i.e. the value
of tarining RMSE for NF is minimum i.e. 0.0187 whereas
the testing RMSE is minimum for OBDE-NN i.e. 0.1137.
The comparion of RMSE between DE-NN and OBDE-
NN indicates that OBDE-NN is having faster
convergence than DE-NN. Hence, the proposed OBDE-
NN has the advantage of less testing RMSE and faster
convergence compared to the previous reported DE-NN
and NF appproaches to system identification.

Example: 2 (Box Jenkin’s Gas Furnace
Modeling):
The time series data set for a gas furnace consists of 296
input–output samples recorded with a sampling period of
9 seconds. The instantaneous values of output y(t) have
been regarded as being influenced by ten variables
mainly the past values of y(t) for past four sampling
times and u(t) for past six sampling times i.e. y(t − 1),
y(t − 2), y(t − 3), y(t − 4), u(t − 1), u(t − 2), u(t − 3),
u(t − 4) ,u(t − 5), u(t −6).

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

Time step

M
od

el
in

g
er

ro
r (

DE
)

The original data set contains 296 [u(t),y(t)] data pairs.
But, by converting the data set to previous sampling
instants so that each training data consists of
[y(t − 1)…………y(t-4),u(t − 1)………u(t – 6)] reduces
the number of data points to effectively 290 data pairs.

The number of training data was taken as 100 for the
three identification schemes (DE-NN, OBDE-NN and
NF) and the rest 190 data pairs were considered as the
test data.

It may be noted that, for dynamic system modeling, the
inputs selected must contain elements from both set of
historical furnace outputs {y(t-1)…………..y(t-4)} and the
set of historical furnace inputs {u(t-1)…………..u(t-6)}.
For simplicity, we assumed two inputs are fed to the
neural networks namely, one from outputs and the other
from inputs. In other words, we aim to build 24 [=4×6;
because we consider past four y(t) and past six u(t)]
models with various input-output combinations.

Fig. 9 DE-NN Identification error

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

Time step

M
od

el
in

g
er

ro
r (

O
D

E
)

Table 2 gives the training and testing performances of
these 24 models. During these experiments, we observed
the pattern of estimation errors corresponding to the
number of hidden nodes taken. By the process we end up
with choice of eleven numbers of hidden units leading
lowest estimation error. For all the methods eleven
number of hidden layer neurons were taken and the
results obtained after 100 epochs. We have tried for more
no of neurons for the same problem which took more
computational time without achieving appreciable
amount of accuracy.

Fig. 10 OBDE-NN Identification error

9
 ICS Journal March 2009

As it is not possible to show the identification
performance and error curve for all the 24 cases given in
Table 2, we have shown three cases only [y(t-1),u(t-3)) ;
(y(t-4),u(t-5) and (y(t-4),u(t-4))] to analyze the RMSE
and their performances.

10

In Fig.12 we can see that the NF with y(t-1) and u(t-3) as
inputs has the smallest training error but for the same
inputs OBDE-NN is having least testing error. Figure 13
display the identification performances curves, for time
step 0 to 300. Figure 14 shows the same identification
performances within the time step 110 to 116, the actual
and OBDE-NN model output are matching
approximately but for the other two i.e. DE-NN and NF
model the identification error is more.

10 20 30 40 50 60 70 80 90 100

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of epochs

R
M

SE

OBDE
DE
NF

Fig. 12 Comparison of training RMSE for DE-NN,OBDE-NN and NF

for the input (y(t-1),u(t-3))

0
 50

 100
 150 200

 250 300
45

50

55

60

65

Time step

O
ut

pu
t

t t

 DE

Actual

O BDE

NF

Fig. 13 Comparison of identification performance for the input (y(t-

1),u(t-3)

112 112.5 113 113.5 114 114.5 115 115.5

59.2

59.4

59.6

59.8

60

60.2

60.4

Time step

O
ut

pu
t

DE
Actual
ODE
NF

Fig. 14 Comparison of identification performance for the input (y(t-

1),u(t-3)) (within the time step 110-116)

Figure 15 gives the comparison of identification
performance of all the three system identifcation
approaches for the input y(t-4), u(t-5) within the time
step 0 to 300. Figure 16 shows the same identification
performance within the time step 110 to 116 for better
comparison. From these figures it observed that NF is not
identifying the system properly at the same time the

training RMSE is minimum, whose numerical value is
given in Table-2.

0 50 100 150 200 250 300
45

50

55

60

65

Time step

O
ut

pu
t

t

 DE
Actual
OBDE
NF

Fig. 15 Comparison of identification performance for the input (y(t-
4),u(t-5)

108 110 112 114 116 118 120
57

57.5

58

58.5

59

59.5

60

Time step

O
ut

pu
t

 DE
Actual
OBDE
NF

Fig. 16 Comparison of identification performance for the input (y(t-

4),u(t-5) (within the time step 110-120)

Figure 17 gives the RMSE for the input y(t-4) and u(t-5).
Here the we have considered 20 epochs because trere was
no change in RMSE for DE-NN approach after 20
epochs. In this case even if for OBDE-NN the value of
RMSE starts from a higher vale but it is converging to a
lower value finally.

5 10 15 20
0.6

0.7

0.8

0.9

1

1.1

1.2

Number of epochs

R
M

SE

 NF
DE
OBDE

Fig. 17 Comparison of training RMSE for the input (y(t-4),u(t-5))

From Figures 16 and 17 it is observed that even if the
training RMSE for neuro-fuzzy approach is less than that
DE-NN and OBDE-NN approach but due to the more
testing error it is not identifying the nonlinear system
properly.

Figure 18 shows the RMSE for the input y(t-4) and u(t-
4). From the figure it is clear that the RMSE for OBDE-
NN is having higher convergence speed and attending a
lower value in comparison to DE-NN approach the
numerical values are mentioned in Table-2. Figure 19
shows the identification performance for the input y(t-4)
and u(t-4) from which it is found even if the training
error for OBDE-NN approach is slightly higher than the
DE-NN approach but having much better identification

ICS Journal March 2009

capability in comparison to DE-NN approach interms of
faster convergence and less identification error.

Figure 20 shows the NF identification performance for
the input y(t-4) and u(t-4). For this input, the testing
RMSE was found to be maximum for DE-NN approach
which is clear from the Fig.18. Comparing the values
given in Table-2 it was found that the training RMSE is
minimum for NF approach but it is having more testing
RMSE in comparison with OBDE-NN approach. So
neither the DE-NN nor the NF approach is identifying the
nonlinear system accurately. Even if the training RMSE
is less for NF than OBDE-NN method but due to the
overfitting of the neural network the identification error
is more.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Number of epochs

R
M

S
E

DE
OBDE
NF

Table-2 shows the numerical values of training and
testing RMSE for 24 different combinations of inputs and
outputs. The training RMSE was found to be less for 19
cases in NF approach compared to OBDE-NN but in
testing OBDE-NN outperformed for 18 cases. This
occurs due to the over fitting of the neural networks
trained with NF which can be avoided by using the
proposed OBDE-NN approach. Also OBDE-NN was
found to be better in terms of identification performance
and faster convergence compared to DE-NN almost all
cases.

Fig. 18 Comparison of training RMSE for DE-NN,OBDE-NN and NF
for the input (y(t-4),u(t-4))

0 50 100 150 200 250 300
40

60

80

100

120

Time step

O
ut

pu
t

DE

Actual

OBDE

NF

We found that model with y(t-1) and u(t-3) as
input has the smallest training and testing RMSE for DE-
NN, OBDE-NN and NF identification schemes and
considered as best model input output combination
compared to all the 24 combinations given in Table-2.

Fig. 19 Comparison of identification performance for the input (y(t-

4),u(t-4)
8. Conclusions

0 50 100 150 200 250 300
40

45

50

55

60

65

Time step

ou
tp

ut

 NF
Actual

The paper has presented a new differential evolution
approach based on opposition based learning applied for
training neural network used for non-linear system
identification. This new evolutionary approach is found
to exhibit better system identification performances
compared to DE+LM+NN[15] approach presented earlier.
This approach is also outperforms over the existing
neuro-fuzzy approach in terms of better identification
capability.

 Fig. 20 Comparison of NF identification performance for the input

(y(t-4),u(t-5)

11
 ICS Journal March 2009

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1

Table-2 Comparison of Errors for DE-NN, OBDE-NN and NF

References

[1] S. Chen, S. A. Billings (1989). Representation of
non-linear systems: the NARMAX model,
International Journal of Control. 49, 1013-1032.

12

[2] H. Hujiberts, H. Nijmeijer, R.willems (2000).
System identification in communication with
chaotic Systems, IEEE Trans on Circuits and
Systems-I. 47(6), 800-808.

[3] M. Adjrad, A. Belouchrani, (2007). Estimation
of multi component polynomial phase signals
impinging on a multi sensor array using state-

space modeling, IEEE Trans Signal Processing.
55(1), 32-45.

[4] K.Watanbe, I.Matsuura, M.Abe, M.Kebota,
D.M.Himelblau. Incipient Fault Diagnosis of
Chemical Processes via Artificial Neural
Networks, AICHE Journal. 35(11) 1803-1812.

[5] Yao Xie, Bin Guo, Luzhou Xu, Jian Li, Peter
Stoica (2006). Multistatic adaptive microwave
imaging for early breast cancer detection, IEEE
Trans Biomedical Eng. 53(8), 1647-1657.

[6] M. Schetzmen, The Voltera and Winner Theories
on Nonlinear Systems, Newyork, Wiley.

ICS Journal March 2009

http://opus.uu.se/publication.xml?id=92867
http://opus.uu.se/publication.xml?id=92867

13

[7] Feng Dinga, Tongwen Chenb (2005)
Identification of Hammerstein nonlinear ARMAX
systems, Automatica. 41, 1479-1489.

[8] E. Hernandez, Y. Arkun. (1993). Control of
nonlinear systems using Polynomial ARMA
models, AICHE Journal. 39(3), 446–460.

[9] T. T. Lee, J. T. Jeng (1998). The Chebyshev
polynomial-based unified model neural networks
for functional approximation, IEEE Trans. Syst.,
Man Cybern.-B. 28, 925–935.

[10] N. Sadegh, (1993). A perceptron based neural
network for identification and control of nonlinear
systems, IEEE Trans. Neural Networks.4, 82–988.

[11] K. S. Narendra, and K. Parthaasarathy (1990).
Identification and Control of Dynamical Systems
Using Neural Networks, IEEE Trans Neural
Networks. 1, 4-27.

[12] X. Yao (1993). Evolutionary artificial neural
networks, . Int. Journal of Neural Systems, .4, 203-
222,

[13] Storn, R (1999). System Design by Constraint
Adaptation and Differential Evolution, IEEE
Trans. Evol. Comput. 3, 22-34.

[14] J. Ilonen, J. K Kamarainen, J. Lampinen (2003).
Differential Evolution Training Algorithm for
Feed Forward Neural Networks, Neural
Processing Letters, 17, 93-105.

[15] B. Subudhi, D. Jena (2008). Differential
Evolution and Levenberg Marquardt Trained
Neural Network Scheme for Nonlinear System
Identification, Neural Processing Letters, 27(3),
285-296.

[16] B. Subudhi , D. Jena (2008). A State of the Art
on Hybrid Soft Computing Techniques Towards
Identification of Nonlinear Dynamical System
Proc. IEEE Sponsored Conf. on Computational
Intelligence, Control and Computer Vision in
Robotics & Automation,119-124, N.I.T Rourkela

[17] H. R. Tizhoosh (2005). Opposition-based
learning: A new scheme for machine intelligence,
in Proc. Int. Conf. Comput. Intell. Modeling
Controland Autom., Vienna, Austria, vol. I, pp.
695–701.

[18] M. Shokri, H. R. Tizhoosh, and M. Kamel
(2006). Opposition-based Q (λ) algorithm, in Proc.
IEEE World Congr. Comput. Intell.,
Vancouver,BC, Canada, 646–653.

[19] M. Ventresca and H. R. Tizhoosh (2006).
Improving the convergence of back-propagation
by opposite transfer functions, in Proc. EEE
WorldCongr. Comput. Intell. Vancouver, BC,
Canada, 9527–9534.

[20] S. Rahnamayan, H. R. Tizhoosh, and M. M. A
Salama (2008). Opposition versus randomness in
soft computing techniques, Journal of Applied Soft
Comput., 8 (2), 906-918.

[21] S Rahnamayan, H. R. Tizhoosh, and Magdy M.
A. Salam (2008). Opposition-Based Differential
Evolution, IEEE Trans. Evolutionary
Computation, 12 (1), 64-79

[22] C.-T. Lin, C.S. George Lee (1996). Neural Fuzzy
Systems: A Neuro-fuzzy Synergism to Intelligent
Systems, Prentice Hall International, Inc., New
Jersey:

[23] G.E.P. Box and G.M. Jenkins (1970), Time
Series Analysis, Forecasting and Control, Holden
Day, San Francisco.

[24] J.-S. Jang (1993). ANFIS: Adaptive Network
based Fuzzy Inference Systems, IEEE
Transactions on Systems, Man, and Cybernetics.
23(3), 665-685.

[25] J.-S. Roger Jang, C.-T. Sun and E. Mizutani
(2003). Neuro-fuzzy and Soft Computing: A
Computational Approach to Learning and Machine
Intelligence, Eastern Economy Edition, New
Delhi: PHI.

[26] L. Jung (1999). System identification: theory for
the user. (2nd ed). Englewood Cliffs, New Jersey,
Prentice-Hall.

Author Biographies

DR. BIDYADHAR SUBUDHI has received a Bachelor
Degree in Electrical Engineering from Regional
Engineering College Rourkela (presently National
Institute of Technology Rourkela), India, Master of
Technology in Control & Instrumentation from Indian
Institute of Technology, Delhi in 1994 and PhD degree in
Control System Engineering from University of Sheffield,
United Kingdom in 2003. He worked as a Post Doctoral
Research Fellow in the Department of Electrical &
Computer Engineering, NUS, Singapore during May-
Nov 2005. Currently he is a Professor in the Department
of Electrical Engineering in the National Institute of
Technology, Rourkela, India. His research interests
include System Identification, Intelligent Control,
Control of Mobile and Flexible Robot Manipulators,
Estimation of Signals & Systems. He is an author of 25
journal papers and 30 conference papers, a chapter in a
research monograph. He is a Fellow of the Institution of
Engineers (India), Life Member of Systems Society of
India and Senior Member of IEEE. He is serving as a
Technical Committee Member, IEEE Intelligent Control
Society.

DEBASHISHA JENA has received a Bachelor of
Electrical Engineering degree from University College of
Engineering, Burla, India, in 1996 and Master of
Technology in Electrical Engineering in 2004. He is
currently working toward the award of the PhD degree in
the Department of Electrical Engineering, National
Institute of Technology, Rourkela, India. He worked as a
Faculty Member in the National Institute of Science &
Technology, Berhmapur, Orissa during 2004-2007. His
research interests include Evolutionary Computation and
System Identification with application to Non-linear
Systems. He has been awarded a GSEP Fellowship in
2008 from Canada for research in Control and
Automation.

ICS Journal March 2009

	 Definition of opposite number:
	 Opposition based optimization:
	Opposition-Based Population Initialization
	
	Opposition-Based Generation Jumping

