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Abstract  
The slow convergence and local minima problems 
associated with neural networks (NN) used for non-linear 
system identification have been resolved by evolutionary 
techniques such as differential evolution (DE) combined 
with Levenberg Marquardt (LM) algorithm. In this work 
the authors attempted further to employ an opposition 
based learning in DE, known as opposition based 
differential evolution (OBDE) for training neural 
networks in order to achieve better convergence of DE. 
The proposed OBDE together with DE and neuro-fuzzy 
(NF) approaches to non-linear system identification has 
been applied for identification of two non-linear system 
benchmark problems. Results presented clearly 
demonstrate that the OBDE-NN method of non-linear 
system identification provides excellent identification 
performance in comparison to both the DE and NF 
approaches. 
 
Keywords: Back Propagation, Differential evolution, 
Evolutionary computation, Nonlinear System Identification, 
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1. Introduction 
System identification is widely used in a number of  
applications such as in control system [1], 
communication [2], signal processing [3], chemical 
process control [4] and biological processes [5] etc. In the 
strict sense, all the real-world problems are nonlinear in 
nature. It is pertinent that there is less computational 
difficulty encountered for identification of a linear 
system. However, in the nonlinear system identification, 
the scenario is not straightforward. There are some 
classical parameterized models such as Voltera series [6], 
Winner-Hammerstein model [7] and polynomial 
identification methods [8, 9] which provide a reasonable 
degree of accuracy but these methods involve 
computational complexities. Subsequently, neural 
networks have been extensively used for modeling 
complex system dynamics in a systematic approach 
especially those which are hard to be described 
mathematically. It has been proved that any continuous 
function can be approximated by a feed-forward neural 
network trained with back-propagation learning 
algorithm to a reasonable degree of accuracy [10]. This 
function approximation property can be exploited to 
model a number of complex systems. Narendra and 
Parthasarathy [11] have shown that multilayer neural 
networks trained with standard back-propagation 

algorithm can be used effectively for the identification of 
nonlinear dynamical systems. Subsequently the local 
minima problems encountered in these have been 
overcome to a reasonable extent exploiting evolutionary 
approaches to train neural networks and these networks 
are known as evolving neural networks. 
 
Research on designing evolutionary neural networks has 
progressed significantly by combing several variants of 
evolutionary algorithms such as genetic algorithm (GA), 
genetic programming (GP) and particle swarm 
optimization (PSO) with neural networks [12]. 
Differential evolution is an effective, efficient and robust 
optimization method capable of handling nonlinear and 
multimodal objective functions. The advantages of DE are 
many such as it is simple and has compact structure which 
uses a stochastic direct search approach and utilizes 
common concepts of EAs. Furthermore, DE uses few easily 
chosen parameters and provides excellent results for a wide 
set of benchmark and real-world problems [13, 14]. 
DE+LM+NN nonlinear system identification has been 
developed earlier by the authors [15] where, DE and LM 
have been used in a combined framework to train a neural 
network for achieving faster convergence of neural network 
weight optimization.  To improve the performance of DE 
trained NN further, the authors propose in this paper a 
new training method of NN by using the concept of 
opposition based learning (OBL) in DE. This new 
nonlinear system identification scheme is called OBDE-
NN.  
 
The concept of opposition-based learning (OBL) was 
first introduced by Tizhoosh [17]. It usually applied to 
accelerate reinforcement learning [18] and back-
propagation learning in neural networks [19]. The main 
idea behind OBL is the simultaneous consideration of an 
estimate and its corresponding opposite estimate (i.e., 
guess and opposite guess) in order to achieve a better 
approximation for the current candidate solution. In this 
paper, OBL has been exploited to accelerate the 
convergence rate of DE. Hence, the proposed approach is 
called opposition-based differential evolution (OBDE). 
OBDE uses opposite numbers during population 
initialization and also for generating new populations 
during the evolutionary process. Here opposite numbers 
have been utilized to speed up the convergence rate of an 
optimization algorithm. It may be noted that selection of 
solutions based on purely random initialization gives rise 
to problem of visiting or even revisiting unproductive 
search regions. The chance of the above problem 
occurring can be resolved by using opposite numbers 
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instead of using purely random numbers for initialization 
of populations. In fact, a mathematical proof has already 
been proposed to show that, opposite numbers are more 
likely to be closer to the optimal solution than purely 
random ones [20]. In [21], the usefulness of opposite 
numbers is investigated by replacing them with random 
numbers and it is applied for population initialization and 
generation jumping for different versions of DE. 
 
 However, a little work has been reported on applying 
OBDE to system identification and its use in training 
neural network for nonlinear system identification. 
Therefore, we present in this paper an opposition based 
differential evolution for training a feed-forward neural 
network used as a nonlinear system identifier. 
 
Nonlinear system as considered in [22, 23] has been 
chosen in this work for demonstrating the effectiveness 
of the proposed OBDE-NN system identification 
approach compared to DE-NN and NF approach. In this 
work, an opposition based differential evolution method 
combined with LM has been applied as a global 
optimization method for training a feed-forward neural 
network. In the proposed scheme, the OBDE is used to 
train the neural network that is chosen as a suitable 
candidate for nonlinear system identification. After 
observing the trends of training towards minimum 
through OBDE, the network is then trained by LM. The 
role of the OBDE here is to approach towards global 
minimum point and then LM is used to move forward 
achieving fast convergence. According to the proposed 
algorithm, after reaching the basin of global minimum, 
the algorithm is switched from global search of the 
evolutionary algorithm (OBDE) to local search, LM. In 
opposition based differential evolution, at the moment of 
starting, the differential term is very high. As the solution 
approaches to global minimum, the differential term 
automatically changes to a low value. So during the 
initial period, the convergence speed is faster and the 
search space is very large but in latter stages nearer to the 
optimum as the differential term is small, the algorithm 
becomes slower which will take more time to converge. 
As LM is a gradient based algorithm it can be exploited 
to increase the convergence speed of the neural network 
training algorithm for reaching the global minimum. 
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The main contributions of the paper are as follows:  
 

• Designing of OBDE-NN scheme to accelerate 
the convergence of DE used for non-linear 
system identification. 

• LM has been integrated with the OBDE to 
enable faster search process for achieving faster 
convergence.  

• The identification performance of the proposed 
OBDE-NN scheme has been compared with the 
DE-NN and NF approaches to nonlinear system 
identification and found to be better than the 
later.  

 
The paper is organized as follows. Section 2 reviews the 
NNarchitecture. Section 3 presents the neuro-fuzzy 

technique in system identification followed by a brief 
review on the differential evolution technique in section 
4. Subsequently in section 5 and 6 we describe the 
proposed differential evolution combined with neural 
network approach to nonlinear system identification. 
Finally the paper discusses the results of all the aforesaid 
techniques in section 7 to arrive at conclusions. 
 

 

2. The NN Architecture 
In case of MLPNN architecture, one hidden layer is 
sufficient to guarantee the universal approximation 
feature. Fig 2 illustrates this kind of network. 
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Fig.1 NN identifier with external dynamics 

 
The input vector dimension depends on the system order. 
The following two equations describe the signal 
propagation from input layer to output layer.  

1 1(hy W vψ )b= +                                              (1) 

2ˆ ( T
h 2 )y W y bψ= +                                              (2) 

where is the output from the hidden units, is the hy
1W

weight  matrix of  the first layer,  is the weight of the 
2W

output layer v  is the regression vector of inputs,  is 1b
the bias for hidden units, is the bias for output units 2b
and ψ is the nonlinear function which we have taken as a 
sigmoid function as these are easier to train compared to 
many other activation functions such as hard limiter etc. 
Moreover, with sigmoid units, a small change in the 
weights will usually produce a change in the outputs, 
which makes it possible to tell whether that change in the 
weights is good or bad. 
 

3. A Review on Neuro-Fuzzy Technique 
for Nonlinear System Identification 

Neuro-fuzzy [NF] technique is a very popular system 
modeling paradigm used for obtaining models of many 
complex nonlinear systems. Although this technique is 
described in many books and papers [24, 25] but we 
describe it here in brief for completeness. Fig.3 shows a 
well known neuro-fuzzy modeling structure [24, 25]. In 
neuro-fuzzy modeling technique (Fig.2) there are five 
layers with the following characteristics. 
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Fig.2 Neuro-fuzzy technique 
 

In layer 1, each adaptive node i has node function  
defined as: 
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where (x or y) is the input to node i and  (oriC 2iD −
) is a 

linguistic label associated with this node. Here, the node 
function of the i-th node is considered as a generalized 
bell shaped membership function given by 

2
1( )

1
i iC b

i

i

x
x c

a

μ =
−

+

                  (3) 

where {ai, bi, ci} are the parameter set that changes the 
shapes of the membership function. Parameters in this 
layer are the premise parameters. 
 
In layer 2, represents a fixed node and each of the node 
calculates the firing strength of a fuzzy as follows 

2, ( ). ( ) , 1,2
i ii i C DO w x y iμ μ= = =                 (4) 

 
In layer 3, the fixed node i calculates the ratio of the i-th 
rule’s firing strength ( ) to the total of all firing 
strength as: 

iw

2,1,
21

,3 =
+

== i
ww

wwO i
ii     (5) 

The output of layer-3 given in equation (5) denotes the 
normalized firing strength ( iw ) 
 
In layer 4, the adaptive node I, computes the contribution 
of i-th rule towards the overall output with the following 
node function: 

4, ( )i i i i i i iO w z w p x q y r= = + +       (6) 

where  are Known as the consequent 
parameters of the rule. 

),,( iii rqp

The single fixed node in layer 5 computes the overall 
output as the summation of signal contributions from 
each rule: 

5,

i i
i

i i i
i i

i

w z
O w z

z
=

∑
∑ ∑

        (7) 

The basic learning rule adopted in this neuro-fuzzy 
modeling technique is the back propagation gradient 
descent, which calculates error signals (the derivative of 
the squared error with respect to each node’s output) 
recursively from the output layer backward to the input 
nodes. This learning rule is exactly the same as the back 
propagation learning rule used in the feed-forward neural 
networks. 

The overall output z can be expressed as linear 
combinations of the consequent parameters: 

1 2 1 1

2 2 2

( ) ( ) ( )
( ) ( ) ( )

i i i i i

i i i

1z w z w z w x p w y q w r
w x p w y q w r
= + = +

+ + +
         (8) 

 
4. Differential Evolution Technique 
The differential evolution technique is capable of 
handling non-differentiable, non-linear and multimodal 
objective functions [13, 14]. It has been used to train 
neural networks having real and constrained integer 
weights. In a population of potential solutions within a d-
dimensional search space, a fixed number of vectors are 
randomly initialized, then evolved over time to explore 
the search space and to locate the minima of the objective 
function. 
 
At each generation new vectors are generated by the 
combination of vectors randomly chosen from the current 
population (mutation). The out coming vectors are then 
mixed with a predetermined target vector. This operation 
is called recombination and produces the trial vector. 
Finally, the trial vector is accepted for the next generation 
if and only if it yields a reduction in the value of the 
objective function. This last operator is referred to as a 
selection. There are many different variants of DE [13], 
the variants are 

• DE/best/1/exp 
• DE/rand/1/exp 
• DE/rand-to-best/1/exp 
• DE/best/2/exp 
• DE/rand/2/exp 

 
Now we explain the working steps involved in employing 
a DE cycle. 
 
Step 1: Parameter setup 
Choose the parameters of population size, the boundary 
constraints of optimization variables, the mutation factor 
(F), the crossover rate (C), and the stopping criterion of 
the maximum number of generations (g). 
 
Step 2: Initialization of the population 
Set generation g=0. Initialize a population of i=1, P 
individuals (real-valued d-dimensional solution vectors) 
with random values generated according to a uniform 
probability distribution in the d dimensional problem 
space. These initial values are chosen randomly within 
user’s defined bounds. 
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Step 3: Evaluation of the population 
Evaluate the fitness value of each individual of the 
population. If the fitness satisfies predefined criteria save 
the result and stop, otherwise go to step 4.  
 
Step 4: Mutation operation (or differential operation) 
Mutation is an operation that adds a vector differential to 
a population vector of individuals. For each target vector 

,i gx a mutant vector is produced using the following 
relation, 

1 2, , , ,(i g r g r g r gv x F x x= + −

4 
 

3
)                      (9) 

In Eqn. (10), F is the mutation factor, which provides 
the amplification to the difference between two 
individuals so as to avoid search 
stagnation and it is usually taken in the range of [0, 1], 
where 

2 3, ,( r g r gx x )−

{ }1 2 3,r r, , 1, 2,......i r P∈ are randomly chosen 

numbers but they must be different from each other. P is 
the number of population. 
 
Step 5: Recombination operation 
Following the mutation operation, recombination is 
applied to the population. Recombination is employed to 
generate a trial vector by replacing certain parameters of 
the target vector with the corresponding parameters of a 
randomly generated donor (mutant) vector. There are two 
methods of recombination in DE, namely, binomial 
recombination and exponential recombination.  

 
In binomial recombination, a series of binomial 
experiments are conducted to determine which parent 
contributes which parameter to the offspring. Each 
experiment is mediated by a crossover constant, C, (0 ≤ C 
<1). Starting at a randomly selected parameter, the source 
of each parameter is determined by comparing C to a 
uniformly distributed random number from the interval 
[0, 1) which indicates the value of C can exceed the value 
1. If the random number is greater than C, the offspring 
gets its parameter from the target individual; otherwise, 
the parameter comes from the mutant individual. In 
exponential recombination, a single contiguous block of 
parameters of random size and location is copied from 
the mutant individual to a copy of the target individual to 
produce an offspring. A vector of solutions are selected 
randomly from the mutant individuals when   

( , is a random number) is less than C. 
jrand

[ 1,0∈jrand ]
, ,

, ,
, ,

i f ( ) o r

o th e rw is e
j i g j r a n d

j i g
j i g

v r a n d C j j
t

x

≤ =⎧⎪= ⎨
⎪⎩

  (10) 

1 , 2 . . . . . .j d= , where d  is the number of parameters 
to be optimized. 
Step 6: Selection operation 
Selection is the procedure of producing better offspring. 
If the trial vector,  has an equal or lower value than 

that of its target vector,
,i gt

,i gx  it replaces the target vector 

in the next generation; otherwise the target retains its 
place in the population for at least one more generation.  

, , ,
, 1

,

, ( ) ( )

,
i g i g i g

i g
i g

t i f f t f x
x

x o th erw ise+

≤⎧⎪= ⎨
⎪⎩

 (11) 

Once new population is installed, the process of 
mutation, recombination and selection is replaced until 
the optimum is located, or a specified termination 
criterion is satisfied, e.g., the number of generations 
reaches a predefined maximum . maxg
At each generation, new vectors are generated by the 
combination of vectors randomly chosen from the current 
population (mutation). The upcoming vectors are then 
mixed with a predetermined target vector. This operation 
is called recombination and produces the trial vector. 
Finally, the trial vector is accepted for the next generation 
if it yields a reduction in the value of the objective 
function. This last operator is referred to as a selection.  
The most commonly used method for validation is to 
utilize the root mean-squared error (RMSE) between the 
actual output y(n) of the system and the predicted output 
ˆ( )y n . In this work we have taken the cost function as 

root mean squared error (RMSE)  

i.e. [ ]2
1

1 ( , )
N

k

f
N =

= −∑E y x w , where N is the number of data 

considered.  The block diagram and pseudo code for DE 
are given in Fg.4 and Fig.5 respectively. 
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          Set the parameters F, C, P and gmax 

If f < ε  

or 

g > g max 

Save Results and stop 

Initialize population i=1 

Mutate to have a trial vector 

1 2 3, , , ,( )i g r g r g r gv x F x x= + −  

Crossover  x with v to generate new individual 

, ,
, ,

, ,

if ( )or

otherwise
j i g j rand

j i g
j i g

v rand C j j
t

x

≤ =⎧⎪=⎨
⎪⎩

 

, ,( ) ( )i g i gf t f x≤

, 1i gx + = ,i gt  , 1i gx + = ,i gx  

P=population size?

Yes 

Yes 
No 

i=i+1 g=g+1 

Generate initial population randomly within 
the search range. g=0 

No Yes 

No 

 

5 
 

Fig. 3 Block diagram for DE algorithm 
 
5. Opposition based Differential Evolution  
 
Generally in all evolutionary algorithm approaches, a 
uniform random guess is considered for initial 
population. As the search process progresses, the 
solutions obtained move towards the optimal value. It 
may be noted that in the case of random guess, when the 
distance between the initial guess and final optimal 
solution is more the algorithm takes more time to reach 
the optimal value and vice-versa. However Opposition 
based learning improves the chance of starting with better 
initial population by checking the opposite solutions. As 
the initial guess is always random, by looking into the 
opposite direction and starting with the closer of the two 
guesses (as judged by the fitness value) the algorithm 
accelerates towards convergence. The same approach can be 
applied not only to initial solutions but also applied 
continuously to each solution in the current population. 
However, before concentrating on OBL, we need to 
define the concept of opposite numbers [17]. 
 

 Definition of opposite number: 

Let [ , ]x a b∈ be a real number. The opposite number is 
x which is defined by x a b x= + −  

 Definition of opposite point: 
Let 1 2( , ...... )dp x x x= be a point in the D dimensional 

space where 1 2, ...... dx x x R∈ and [ , ]i i ix a b∈ . The 

opposite point 1 2( , ...... )dp x x x= where 

i i i ix a b x= + −   
 Opposition based optimization: 

Let 1 2( , ...... )dp x x x= be a point in the D dimensional 

i.e. a candidate solution. Assume (.)f is the fitness 
function which is used to measure the candidate’s fitness. 
According to the definition of the opposite point 

1 2( , ...... )dp x x x= is the opposite of 

1 2( , ...... )dp x x x= . Now if ( ) (f )p f p≥

,

D

then point 

can be replaced by otherwise we will continue 
with . Hence the point and its opposite point are 
evaluated simultaneously in order to continue with the fit 
one. 

p p
p

 
Development of Proposed OBDE Algorithm 
 
Similar to all other variants of evolutionary computing 
techniques DE also employs two main steps namely 
population initialization and application of evolutionary 
operations (mutation, crossover and selection) for 
producing new generations of populations. We will 
enhance these two steps using the OBL scheme. The 
original DE is chosen as a parent algorithm and the 
proposed opposition-based ideas are embedded in DE to 
accelerate its convergence speed. In OBDE the first step 
follows an opposition based population initialization 
where as the second step considers an opposition based 
generation jumping. Corresponding block diagram and 
pseudo code for the proposed approach (OBDE) is given 
in Fig. 6 and Fig.7 respectively.  
 
Opposition-Based Population Initialization 
 
In all population based algorithms owing to the absence 
of a-priori knowledge on solutions, a set of candidate 
solutions (populations) are usually initialized as random 
numbers. But this evolution process takes more time as 
said earlier. Hence by utilizing OBL, we can obtain fitter 
starting candidate solutions even when there is no a 
priori knowledge about the solution(s). To implement 
OBL based population initialization we create a 
population pop and then applying the formula given in 
equation (14), we get the opposite population. 
 

,i j j j i jo p o p a b p o p= + −                                 (12) 
1 , 2 , . . . . . . . 1 , 2 , . . . . . . . . . . .i P j= =  

where popi,j and opopi,j denote the jth variable of the ith 
vector of the population and opposite population 
respectively. Select P fittest individual from the total 
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population of pop and opop i.e. (pop U opop) as initial 
population, where U stands for union. 

6 
 

 
Opposition-Based Generation Jumping 
 
Generation jumping decides whether the current 
population will follow all the steps as in opposition based 
population initialization procedure or directly jumps to 
the next generation. This can be implemented by using a 
jumping probability (jumping rate), Jr. If the jumping rate 
exceeds a random number that is generated in the current 
generation then the population will jump to the next 
generation directly as shown in Fig.6. Thus, the 
computation can be saved and algorithm becomes faster. 
Based on this jumping rate, after generating new 
population by mutation, crossover, and selection, the 
opposite population is calculated and  P fittest individuals 
are selected from the union of the current population and 
the opposite population. Instead of using variables’ 
predefined interval boundaries generation jumping 
calculates the opposite of each variable based on 
minimum and maximum values of that variable in the 
current population which is given in equation (13). 
 

, ,  min ( )  max ( ) - i j j j i jonpop npop npop npop= +

      Set the parameters F, C, P and gmax 

If f <  
or

g > g max

ε  
Save Results and stop

Initialize population i=1 

Mutate to have a trial vector 

1 2 3, , , ,( )i g r g r g r gv x F x x= + −  

Crossover  x with v to generate new individual 

, ,
, ,

, ,

if ( ) or

otherw ise
j i g j rand

j i g
j i g

v rand C j j
t

x

≤ =⎧⎪= ⎨
⎪⎩

 

, ,( ) ( )i g i gf t f x≤

, 1igx + = ,i gt  , 1igx + = ,i gx

P=population size? 

Yes 

Yes No

i=i+1

g=g+1

Generate initial population randomly within the search range 

No

Yes 

No 

Calculate opposition based population npop 

Find out P fittest individual from ( pop U npop) , generation 
g=0

Calculate opposition based individuals 

Find out P fittest individual population.  

            g=gmax ? 

No 

Yes

Save Results and Stop

             randj< Jr? 

Yes 

   (13) 
Thus, generation jumping calculates the opposite 
population dynamically. 

 
Fig. 4 Block diagram for DE algorithm 
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/*Initialization of opposition based population*/ 
Generate a initial random population ipop 
for (i=0; i<P; i++) 
for (j=0; j<D; i++) 
iopopi,j =aj+bj – popi,j 

Select P fittest individual from the set (ipop,iopop) as 
initial population  
While (convergence criterion not yet met) 
{ 

// ,i gx defines a vector of the current vector 

population 

// , 1i gx + defines a vector of the new vector population 

in the next generation  
for (i=0; i<P; i++) 
{ 
r1 = rand (P); //select a random index from 1, 2, P 
r2 = rand (P); //select a random index from 1, 2, P 
r3 = rand (P); //select a random index from 1, 2, P 

1 2 3, , , ,( )i g r g r g r gv x F x x= + −  

/* opposition based mutation starts*/ 
Store in mutation population mpop 
ompopi,j=min(mpop j)+ max(mpop j) – mpopi,j 
Select P fittest individual from the set (mpop i,j, 
ompopi,j) which is denoted by ov 
/* opposition based mutation ends*/ 

, ,
, ,

, ,

i f ( ) o r

o th e r w is e
j i g j ra nd

j i g
j i g

o v ra n d C j j
t

x

≤ =⎧⎪
= ⎨
⎪⎩

 

if , ,( ) ( )i g i gf t f x≤  

, 1i gx + = ,i gt  

} 
else 
{ 

, 1i gx + = ,i gx  

} 
} 
}//end   % while 
Initialize the weight matrix of Levenberg-Marquardt 
algorithm taking the values of weights obtained after 
the fixed number of iterations.  
Initialize Weights; 
while not meet the  Stop Criterion do 

Calculates ( )pe w for each pattern; 

1
1

( ) ( )
P

p T p

p
e e w e w

=

=∑  

Calculates ( )pJ w  for each pattern; 

Repeat 

Calculate wΔ ; 

2
1

( ) ( )
P

p T p

p
e e w w e w w

=
= + Δ + Δ∑ ; 

if 1 2e e≤  then 

μ μβ=  

End %if 

until 2 1( )e e< ; 

/μ μ β=  

w w w= + Δ  
end %while 

6. A Combined OBDE-NN Approach to 
System Identification 
Here, we describe how an OBDE is applied for training a 
neural network in the framework of system identification 
(see pseudo code in Fig.5). According to the proposed 
algorithm, the value of the cost function after reaching a 
particular value of ε , the algorithm is switched from 
global search such of the evolutionary algorithm (OBDE) 
to local search, LM. In opposition based differential 
evolution, at the moment of starting, the differential term 
is very high. As the solution approaches to global 
minimum the differential term automatically changes to a 
low value. So at initial period the convergence speed is 
faster and search space is very large but in latter stages 
nearer to the optimum due to small differential term the 
algorithm becomes slower which will take more time to 
converge. As LM is a gradient based algorithm at that 
point the role of LM is to increase the convergence speed 
for reaching the global minimum. OBDE can be applied 
to global searches within the weight space of a typical 
feed-forward neural network. Output of a feed-forward 
neural network is a function of synaptic weights w and 
input values , i.e. . The role of LM in the 
proposed algorithm has been described in section I. In the 
training processes, both the input vector x and the output 
vector 

x ),( wxy f=

y are known and the synaptic weights in w are 
adapted to obtain appropriate functional mappings from 
the input x to the output .y  Generally, the adaptation 
can be carried out by minimizing the network error 
function which is of the form . In this 
work we have taken E as root mean squared error 

i.e.

E )),(xf,( wyE

[ ]

7 
 

2

1

( , )f= −E y x w1 N

kN =
∑  

where N is the number of data considered. The 
optimization goal is to minimize the objective function 

 by optimizing the values of the network weights, w , 
where,  
E

1( , , )dw w=w
 
Pseudo code (OBDE-NN Identification 
Algorithm) 

 
Fig. 5 Pseudo code of OBDE-NN identification scheme 
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7. Problem Formulation  
Results for Example 1: 

Example: 1 ( A Benchmark Nonlinear System)  We have chosen 11 numbers of neurons in the hidden 
layer by trial and error so as to obtain the best results.  
This is explained as follows. We have tried for more no 
of neurons for the same problem which takes large 
computational time without achieving appreciable 
amount of accuracy. After 500 epochs, the training of the 
neural identifier has been stopped. After the training is 
over, the identifier’s prediction ability has been tested for 
the input given as follows.  

We will consider the non-linear system [22, 23] to verify 
our system identification algorithm given by 

2 2

( )[ ( 1) 2][ ( ) 2.5]
( 1) ( )

8.5 [ ( )] [ ( 1)]
p p p

p
p p

y t y t y t
y t u t

y t y t
− + +

+ = +
+ + −

          (14) 

where  is the output of the system at the t( )py t th time 
step and u(t) is the plant input which is uniformly 
bounded function of time. The plant is stable at u(t)∈[-2 
2] i.e. the input signal u(t) is bounded in the region [-2 2]. 
The identification model be in the form of 

22cos if 200
100

( )
21.2sin if 200 500
20

t t
u t

t t

π

π

⎧ ⎛ ⎞ ≤⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ < ≤⎜ ⎟⎪ ⎝ ⎠⎩

             (16) 
( 1) ( ( ), ( 1)) (pi p p )y t f y t y t u+ = − + t                  (15)  

where  is the nonlinear function 

of
( ( ), ( 1))p pf y t y t −

 ( )py t and which will be the inputs for DE-NN 
and OBDE-NN neural system identifier. The output from 
neural network will be . The goal is to train the  
neural networks used to identify the above system such 
that when an input u(t) is presented to the network and to 
the nonlinear system, the network outputs 

( 1)py t −
Figures 6, 7 give the identification performances of the 
three identification schemes discussed before namely, 
DE-NN, OBDE-NN and NF schemes.  

( 1)piy t +
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( 1)piy t + and 

the actual system output ( 1)py t +  should be as close as 
possible i.e. the identified system  output should follow 
the actual system output. 
 
Example 2 (Box and Jenkins’ Gas Furnace System ) 
[23]: 
 
Box and Jenkins’ gas furnace data are frequently used in 
performance evaluation of system identification methods. 
Given the recorded input–output samples  i.e. the input 
variables as the gas flow u(t), and one output variable, the 
concentration of carbon dioxide (CO

 
Fig. 6 Comparison of identification performance of OBDE-NN, DE-NN 

and NF approaches 
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2), y (t)., the 
objective is to obtain a model of this gas combustion  
process using neural network identification approaches.  
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8. Results and Discussion 

We present in the system identification results obtained 
with different approaches such as DE-NN, OBDE-NN 
and NF applied to the system given in equation (16) and 
Box Jenkins, Gas furnace problem [23]. In all our 
simulation studies we have used MATLAB software for 
coding. The parameters considered for simulation of 
OBDE-NN and DE-NN schemes are given in Table-1 

 
Fig. 7 Comparison of identification performance of OBDE-NN, DE-NN 

and NF approaches (for the time step 92-112) 

( )y tFigure 6 compares the actual output ,  and identified 
plant output y t  within the time step of 0 to 500. As 
the identification performances shown in  Figure 6 are 
overlapping each other, in Figure 7 we have shown the 
results within the time step of 92 to112. From this it is 
clear that the proposed OBDE-NN exhibits better 
identification ability compared to DE-NN and NF 
approaches. 

 
Table-1 Parameters for DE-NN and OBDE-NN ˆ( )

 
 

Population size, P 50 
Upper and lower bound of weights [ 0 1] 
Mutation constant factor , F  0.6 
Crossover constant, C 0.5 
Random number, J 0.3 r
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Fig. 8 Comparison of training RMSE  for OBDE-NN, DE-NN and NF 

approaches 
Fig. 11 NF Identification error 

Figures 9, 10 and 11 show the identification errors for all 
the three approaches i.e. OBDE-NN, DE-NN and NF. It 
is seen that the error is the least in the case of OBDE-NN 
amongst the three cases. 

Figure 8 shows  that in NF based identification, the 
RMSE is less than DE-NNand OBDE-NN cases. Due to 
the over fitting of the weights of the neural network the 
the testing RMSE for NF scheme  is not minimum even if 
the training RMSE is minimum. This can be analysed 
from the numerical values given in Table-2 i.e. the value 
of tarining RMSE for NF is minimum i.e. 0.0187 whereas 
the testing RMSE is minimum for OBDE-NN i.e. 0.1137. 
The comparion of RMSE between DE-NN and OBDE-
NN indicates that OBDE-NN is having faster 
convergence than DE-NN. Hence, the proposed OBDE-
NN has the advantage of less testing RMSE and faster 
convergence compared to the previous reported DE-NN 
and  NF appproaches to system identification. 

Example: 2 (Box Jenkin’s Gas Furnace 
Modeling): 
The time series data set for a gas furnace consists of 296 
input–output samples recorded with a sampling period of 
9 seconds. The instantaneous values of output y(t) have 
been regarded as being influenced by ten variables 
mainly the past values of y(t)  for past four  sampling 
times and u(t) for past six sampling times i.e.   y(t − 1), 
y(t − 2), y(t − 3), y(t − 4), u(t − 1), u(t − 2), u(t − 3), 
u(t − 4)    ,u(t − 5), u(t −6).  
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The original data set contains 296 [u(t),y(t)] data pairs. 
But, by converting the data set to previous sampling 
instants so that each training data consists of 
[y(t − 1)…………y(t-4),u(t − 1)………u(t – 6)] reduces 
the number of data points to effectively  290 data pairs.  
 
The number of training data was taken as 100 for the 
three identification schemes (DE-NN, OBDE-NN and 
NF) and  the rest 190 data pairs were considered as the 
test data.  

  
It may be noted that, for dynamic system modeling, the 
inputs selected must contain elements from both set of 
historical furnace outputs {y(t-1)…………..y(t-4)} and the 
set of historical furnace inputs {u(t-1)…………..u(t-6)}. 
For simplicity, we assumed two inputs are fed to the 
neural networks namely, one from outputs and the other 
from inputs. In other words, we aim to build 24 [=4×6; 
because we consider past four y(t) and past six u(t)] 
models with various input-output combinations.  

Fig. 9 DE-NN Identification error 
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Table 2 gives the training and testing performances of 
these 24 models.  During these experiments, we observed 
the pattern of estimation errors corresponding to the 
number of hidden nodes taken. By the process we end up 
with choice of eleven numbers of hidden units leading 
lowest estimation error. For all the methods eleven 
number of hidden layer neurons were taken and the 
results obtained after 100 epochs. We have tried for more 
no of neurons for the same problem which took more 
computational time without achieving appreciable 
amount of accuracy.  

 
Fig. 10 OBDE-NN Identification error 

 

9 
 ICS Journal March 2009



As it is not possible to show the identification 
performance and error curve for all the 24 cases given in 
Table 2, we have shown three cases only [y(t-1),u(t-3)) ; 
(y(t-4),u(t-5) and (y(t-4),u(t-4))] to analyze the RMSE 
and their performances.  

10 
 

 
In Fig.12 we can see that the NF with y(t-1)  and u(t-3) as 
inputs has the smallest training error but for the same 
inputs OBDE-NN is having least testing error. Figure 13 
display the identification performances curves, for time 
step 0 to 300. Figure 14 shows the same identification 
performances within the time step 110 to 116, the actual 
and OBDE-NN model output are matching 
approximately but for the other two i.e. DE-NN and NF 
model the identification error is more. 
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Fig. 12 Comparison of training  RMSE for DE-NN,OBDE-NN and NF  

for the input (y(t-1),u(t-3))  
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Fig. 13 Comparison of identification performance for the input (y(t-

1),u(t-3) 
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Fig. 14 Comparison of identification performance for the input (y(t-

1),u(t-3))  (within the time step 110-116) 

Figure 15 gives the comparison of identification 
performance of all the three system identifcation 
approaches  for the input y(t-4), u(t-5) within the time 
step 0 to 300. Figure 16 shows the same identification 
performance within the time step 110 to 116 for better 
comparison. From these figures it observed that NF is not 
identifying the system properly at the same time the 

training RMSE is minimum, whose numerical value is 
given in Table-2. 
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Fig. 15  Comparison of identification performance for the input (y(t-
4),u(t-5) 
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Fig. 16  Comparison of identification performance for the input (y(t-

4),u(t-5) (within the time step 110-120) 

Figure 17 gives the RMSE for the input y(t-4) and u(t-5). 
Here the we have considered 20 epochs because trere was 
no change in RMSE for DE-NN  approach after 20 
epochs. In this case even if for OBDE-NN the value of  
RMSE starts from a higher vale but it is converging to a 
lower value finally.  
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Fig. 17 Comparison of training  RMSE for the input (y(t-4),u(t-5)) 

 
From Figures 16 and 17 it is observed that even if the 
training RMSE for neuro-fuzzy approach is less than that 
DE-NN and OBDE-NN approach but due to the more 
testing error it is not identifying the nonlinear system 
properly.  

Figure 18 shows the RMSE for the input y(t-4)  and u(t-
4). From the figure it is clear that the RMSE for OBDE-
NN is having higher convergence speed and  attending a 
lower value in comparison to DE-NN approach the 
numerical values  are mentioned in Table-2. Figure 19 
shows the identification performance for the input y(t-4)  
and u(t-4) from which it is found  even if the training 
error for OBDE-NN approach is slightly higher than the 
DE-NN approach but having much better identification 
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capability in comparison to DE-NN approach interms of 
faster convergence and less identification error. 

Figure 20 shows the NF identification performance for 
the input y(t-4)  and u(t-4). For this input, the testing 
RMSE was found to be maximum for DE-NN approach 
which is clear from the Fig.18. Comparing the values 
given in Table-2 it was found that the training RMSE is 
minimum for NF approach but it is having more testing 
RMSE in comparison with OBDE-NN approach. So 
neither the DE-NN nor the NF approach is identifying the 
nonlinear system accurately. Even if the training RMSE 
is less for NF than OBDE-NN method but due to the 
overfitting of the neural network the identification error 
is more. 

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Number of epochs

R
M

S
E 

 

DE
OBDE
NF

Table-2 shows the numerical values of training and 
testing RMSE for 24 different combinations of inputs and 
outputs. The training RMSE was found to be less for 19 
cases in NF approach compared to OBDE-NN but in 
testing OBDE-NN outperformed for 18 cases.  This 
occurs due to the over fitting of the neural networks 
trained with NF which can be avoided by using the 
proposed OBDE-NN approach. Also OBDE-NN was 
found to be better in terms of identification performance 
and faster convergence compared to DE-NN almost all 
cases. 

 
 

Fig. 18 Comparison of training  RMSE for DE-NN,OBDE-NN and NF  
for the input (y(t-4),u(t-4)) 
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We found that model with y(t-1) and u(t-3) as 
input has the smallest training and testing  RMSE for DE-
NN, OBDE-NN and NF identification schemes and 
considered as best model input output combination 
compared to all the 24 combinations given in Table-2.  

 
Fig. 19 Comparison of identification performance for the input (y(t-

4),u(t-4)  
8. Conclusions 
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The paper has presented a new differential evolution 
approach based on opposition based learning applied for 
training neural network used for non-linear system 
identification. This new evolutionary approach is found 
to exhibit better system identification performances 
compared to DE+LM+NN[15] approach presented earlier. 
This approach is also outperforms over the existing 
neuro-fuzzy approach in terms of better identification 
capability.   

 
 Fig. 20  Comparison of NF  identification performance for the input 

(y(t-4),u(t-5) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 
 ICS Journal March 2009

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W86-4HM7RS7-1&_user=1657113&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=fcb7ce35ece493545ff9006756360c7e#tbl1
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