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Abstract — This paper presents and analyses the architeworks, [2, 22, 1, 23]. Each sensor fusion method previ-
ture of a process that can be used for map building and pathsly mentioned is unique to some extend. The Bayesian
planning purposes. This takes into account the uncertaitgythe oldest approach and the one with strongest founda-
inherent in sensor measurements. To this end, Bayesiantiesr. The Dempster-Shafer method is a recent attempt to
timation and Dempster-Shafer evidential theory are usallow more interpretation of what uncertainty is all about.
to fuse the sensory information and to update occupari®gth methods offer approaches to some of the fundamental
and evidential grid maps, respectively. The sensory infaroblems of sensor fusion: information uncertainty, con-
mation is obtained from a sonar array and a stereo visidticts, and incompleteness [24]. Due to this fact, the in-
system. Features are extracted using the Scale Invariaghihation of using Bayes and Dempster-Shafer approaches
Feature Transform (SIFT) algorithm. A statistical compahave been taken into consideration to carry out the fusion
ison between both methods based on Mahalanobis distapoecess along the research in this paper.
measurement is carried out in the fused maps. Finally, theThis paper extends the work done in [21], where a sen-
resulting two evidential maps based on Bayes and Dempster data fusion approach to map building is presented. The
theories are used for path planning using the potential fieéghproach is exemplified by building a map for a laboratory
method. The approach is illustrated using actual measurebot by fusing range readings from a sonar array with land-
ments from a laboratory robot. Both fusion techniques yiehdarks extracted from stereo vision images using the SIFT
improved results, in comparison to using non-fused mapslgorithm. The paper also shows that it is feasible to per-
) ) .. form path planning based on the potential field derived from
Keywords: Sensor fl_JS|on, mobile robots, stereo VISIOly, ps that have been generated using fused range readings
sonar, occupancy grids, SIFT, Dempster-Shafer, potenfial e sonar and the vision system.
field. In this paper, an architecture for a sensor data fusion
. application to map building is proposed. It also con-
1 Introduction tributes with the comparison of two sensor fusion tech-
In the field of autonomous mobile robots one of the mairiques: Bayesian Inference and Dempster-Shafer Eviden-
requirements is to have the capacity to operate indeptaltheory. The comparison is carried out based on the Ma-
dently in uncertain and unknown environments; fusion bflanobis distance method.
sensory information, map building and path planning areThese techniques also yield so-called Occupancy and
some of the key capabilities that the mobile robot has Bempster-Shafer grids, respectively, which are interregd m
possess in order to achieve autonomy. Map building muspresentations that can be used for robot navigation.-Occu
be performed based on data from sensors; the data in fpancy grids were introduced by Elfes in [3, 4]. Dempster-
must be interpreted and fused by means of sensor mod8lsafer grids were proposed in [5], as an alternative to oc-
The fusion process can be carried out using various datadupancy grids. Localisation can also be implemented, but it
sion methods [2]. The result of the fusion of the sens@rnot considered in this paper.
information is utilized to construct a map of the robot’s en- The paper is organised as follows. A multilayer hierar-
vironment and the robot can then plan its own path, avoithical structure for a sensor data fusion is addressed in sec
ing obstacles along the way. tion 2. An overview of sensor models and sensor fusion is
The sensor fusion data algorithms considered in theesented in sections 3 and 4, along with the main contribu-
scope of this paper are: Bayesian method, Dempst@wn of this paper: a novel sensor fusion of Scale Invariant
Shafer method, Fuzzy Logic and Artificial Neural NetFeature Transform, a recently developed computer vision
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method [11], and sonar range readings. Section 5 outlines have been considered in this application are: an ultra-
how the sensor fusion can be employed to generate potential sonic sound device or sonar (it measures the distance
field for indoor robot path planning upon which, experimen-  to objects). A stereo vision system (it takes pairs of
tal results are presented in section 6 where experiments are snapshots from the scene during the travel of the mo-
based on Bayes and Dempster theories, a comparison be- bile robot). A laser range finder is used for evaluating
tween both sensor fusion techniques (Bayes and Dempster) the incoming data from sonar and vision system, but
are showed as well as path planning experiments based Po- not used for the fusion or map building processes.
tential field. Finally, the conclusion of this work is summed

up in section 7 e Layers contains the SIFT algorithm which extracts

features from digital images.

2 Hierarchical Structure e Layer, depicts the sensor data models which are nec-
In this section a multilayer hierarchical structure (archi  essary to quantify the uncertainty that always comes

tecture) for an application in multisensor data fusioninmo  with the sensor data.

bile robots is presented. Figure 1 illustrates how the struc

ture is divided into layers which is based on the functional ®

diagram on multisensor integration and fusion shown in

Layers considers the registration of the sensor data
models into & D spatial representation which is com-

1, 2J.
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Figure 1: Architecture of the map building process.

e Layer; represents the environment (laboratory) in
3 Sensor Models

which the robot has to navigate and collect data.

mon to all sensors. This means that sensor readings
of different modalities must be converted into com-
mon internal representations in advance before the fu-
sion process is carried out. Occupancy and Dempster-
Shafer grids are the two such spatial representations
used in this work.

Layerg shows a local map for each type of sensor
which represents a window of the environment around
the robot. The window is normally centered at the
robot’s current position.

Layer; addresses the sonar map updating. Every time
the mobile robot gathers data while travelling along its
path, it computes a new local mapdyers) that can

be used to construct a global mdpufyers). Bayes and
Dempster-Shafer update rules are used in both sonar-
based and stereo-base mapping systems.

Layers deals with a global map which is simply an
abstraction of the entire environment the mobile robot
has been in. This map can then be used to plan an
optimal path for the robot from its initial state to a goal
state.

Layerg shows the integration of data provided by two
qualitative different sensors; the sensor data fusion is
carried out by integrating the two maps into one [14].

Layeryo concerns itself with the path planning ap-
proach based on the potential field derived from maps
that have been generated using fused range readings
from the sonar and vision systems. Sensor fused
data from both fused modalities (Bayes and Dempster-
Shafer) are compared with each other. The compari-
son is done by applying the Mahalanobis distance to
the maps.

e Layers presents the sensors used for the task and th%iﬂ- Sonar Model

data acquisition.

The mobile robot uses sensors toA common sensor used to measure distance is the ultra-

interact with its environment, the following of whichsonic range finder, a.k.a. sonar. The sonar can measure the
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distance from the transducer to an object quite accurat@y? Vision-SIFT-descriptor Model
However, it can not estimate at what angle within the songb 1 g|FT
cone the pulse was reflected. Hence, there will be some

uncertainty about the angle at which the obstacle was meal '€ Other sensor used for sensor fusion in this study is a
fejeo vision system. In particular, the Scale Invariaat Fe

sured. A wide range of sonar models have been develo . i e
e Transform (SIFT) is a method for extracting distinetiv

in the past years by various researchers, [3], [4], [12], & X A
[15]. Taking the starting point in these methods, a drid !nvar!antfeature§ from digital 'mages [11]. Thefea_tumes a
of cellsCy ;1 < i =2 < amas,1 < j =y < is Invariant to scaling and rotation. They also provide a ro-
defined in front of the sensor. — ™% pust matching across a substantial range of affine disirtio
Consider the representation of the sonar beam c nge iR3D view point, addition of noise and change in
I gmination. Furthermore, the features are distinctive,

shown in figure 2, where the sonar beam is formulated o >
two probability density functions. These functions meas ey can be matched with high probability to other features
large database with many images. The SIFT algorithm

the confidence and uncertainty of an empty and 0ccup|@c§i ; ¢ the followi X i
region in the cone beam of the sonar respectively. They §RRSISts of the following major steps:

defined based on the geometrical aspect and the spatial Sep-Scale-space peak detection: the aim of this step is to

sitivity of the sonar beam. find locations in the image that are invariant to scale
change in the same image.

y e Accurate key-point localization: in this step the posi-
tion of each point candidate is determined; points with

Ciy low contrast and poor localization along the edge are

)¢ removed. This yields a so-called descriptor at each

Sona;lz point.

e Majority orientation assignment: this step makes the
rotation descriptor invariant. This is done by assigning
a consistent orientation to each key-point.

Figure 2: Sonar Model e Computation of the local image descriptor: this step
associates each feature point with a 128-element fea-
Let U denote the top angle of the cone in the horizontal ture vector or interest point descriptor that uniquely
plane and lep denote the (unknown) angle from the center-  identifies that point.

line of the beam to the grid cell; ;. Letr denote a sonar o the descriot found i hi i e left and
range measurement amdhe mean sonar deviation error:. nce the descriptors are found in €ach image, 1.. 1eft an

The valueu in the sonar model represents the minimal meﬁght images, a matching algorithm is applied in both im-

surement and s the distance from the sonar to the cell. uges. Figure 3 presents the matching features descriptors

ing 11, the sonar model can combine quadratic and expon@'#—'Ch have been identified from a stereo pair of images.
tial distributions in the empty probability region of theso
model [15]. ThenP¢(d, ,r) = Fs(6,r)An (o) represents
the probability of the cell’; ; (translated from polar coordi-
natesf, ¢)) being empty, and®? (9, ¢, ) = Os(5,r)An(d)
represents the probability of the cé€ll ; being occupied.
The factorsFy, Os and A, (¢) are given by equations 1, 2
and 3, [15]. ‘

1- ()2, ifoeo,py

Fy(6,r) = €, if o€ [u,r—¢ (1) Figure 3: Descriptor matches between left and rightimages.
0 otherwise
Ou(6.r) = { (1) (1-(52)"), ifoelr-er+d 3.3 SIFT-descriptor model
0 otherwise 3.3.1 Camera Model

(@)

The camera model used is the so-called perspective or

and pinhole model. This model can be seen in the left part of
- (% 2 6 e [72 E] the figu_re 4. 1t represents the camera by its optical center
An(9) = vy 202 (3) ¢y, an image planer, the camera frame, the focal length
0 otherwise f, the optical axes and the principal poiid,., O, ). A 3D
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translate into ellipsoidal regions. The stereo uncenant
ror and the3 D Gaussian distribution can be depicted as in
figures 5(a) and 5(b).

Uncertainty region

Pixel size
L z
Gaussian uncertainty regior
Figure 4: The figure shows in the left part the perspective ' X Xr
or pinhole model and also the triangulation. Left camera Right camera

@) (b)

vectorM = [X,Y, Z]" in a real world coordinate frameFigure 5: ((a) Stereo Geometry showing triangulation un-
which pointM = (X,Y, Z2) is projected into the imagecertainty as a diamond around a point. It also shows

plane or camera frame as the veatar= [z, y, z]7. the empty region uncertainty from the pair of cameras to
the uncertainty region of the poidt. (b) 2D dimensional
3.3.2 Triangulation Gaussian distribution uncertainty region.

The triangulation algorithm outlined in [20] has been im-

plemented in order to obtain the depth of the matching SIFTIN the following, the details of the triangulation error
descriptors.The problem of this algorithm is to determiffodelling are shown, [13]. Consider3D point M =
the midpoint of the vector of the segment parallel to tHel; Y, Z), which is projected onto the left and right image
vectori that joinsl = am;, andi® = T + bRT,, where Planes respectively ag; = [z, 3] andmi, = [z,,y,] as
a € R, andb € R, as it is shown in figure 4. Th&D co- they can be depicted in figure 4. These vectors are assumed
ordinates of each descriptor can be obtained by solving {Rde normally distributed with meaps andy.,- and covari-
equation (4), and the coefficientsb, ¢ can be obtained by @nce matriced; andV;.. The covariance matri¥ of the
solving the linear system (5). TH&componentin equationPOINtM is shown in equation 6, [13].
(4) represents the depth to the paldt

Vi 0 p

M =[X,Y, 2" = amy + %c(ﬁir xm,)  (4) w=J {0 VJ / ©

. Where J is the jacobian of first partial derivatives of
aity —bRT + c(my x RTm,) =T (5) f(my,m,) = M. These equations can be obtained by solv-
- i L _ . ing the equation (4).

R and T are defined as the intrinsic and extgnsm P& The empty regions from the left and right cameras as
rgmetgrs of tThg steﬂeo system, lNhefé' - RIRT_ apd shown as shadow areas in figure 5(a) also need to be mod-
T =1 - R'T. (Ti, Ry) and (T, R,)are theintrin- g)04  The approach taken by Elfes in [3] to model the
sic and extrinsic parameters of the two cameras in the woy pty region of the sonar beam has been taken into consid-
reference frame. These.parqmeters have bgen qbtamed fé%ﬂon and implemented with satisfactory results whiceh ca
the Matlab Camera Calibration Toolbox using single cargg depicted as in figures 6(a) and 6(b). Figure 6(a) shows a

era calibrations7; andri, are the projection vectors of thes p, 1, onapility SIFT-descriptor model. Figure 6(b) shows a
3D point into the left and right image planes respect|vely2D view of the3D model

3.3.3 Stereo Triangulation Error

Due to the factors of quantification and calibration errorg, :
a certain degree of uncertainty must be expected in the %i— Sensor Fusion
angulation. Mathies and Shafer [13] shows how to modelin the following, two different sensor fusion techniques
and calculate the triangulation error in stereo matcheld witre applied:1) Bayesian theory an@) Dempster-Shafer
3D normal distributions. Geometrically these uncertaintiéseory of evidence.
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e The probability of a cell’; ; being occupied is rein-
force if it is between the intervdl, T,]. The rein-
forcement strength the probability of a cell being oc-
cupied.

o Otherwise the value in the cell; ; remains.

More precisely, the resulting grid map is computed in two
steps.
Figure 6: (a)3D view of the SIFT-descriptor probabil- Firstly, probability values in the grid maps are modified
ity model. (b)2D view of the SIFT-descriptor probabilityfor each sensor type using the following expression:
model.

(@) (b)

1 for P°(c) > T,
4.1 Bayes Theory Po_ia() =4 5=l for Po(e) € 3,7, (8)
4.1.1 Bayes Update Formula P(c) otherwise

Elfes and Matthies [3] have proposed in their prevWhereP°(c) is the probability of the cell”; ; being occu-
ous work the use of a recursive Bayes formula to upied. PY(c) is the modified probability of occupancy from
date the occupancy grid for multiple sensor observatidihe first sensor an#y (c) is the modified probability of oc-

(11, ey Tt 7e41). When this formula is transferred to theupancy from the second sensor.
occupancy grid framework, the following is obtained: Secondly, the computed values are then inserted in
Bayes’ rule to obtain the occupied fused probabilit(c)
po _ PPy, (7 Ofthe cellC; ; in the resulting grid.
PePg, + (1— Po)(1— Pg)
e Py, andl — Py, are the prior probabilities thata cellis  pg(c) = Pr(e) B (c) 9)
ccupi 9 ively; ! PP(c)P3(c) + (1 = PP(c)(1 = P3(c))
occupied and empty respectively; they are taken from 1\€)fa(c 1\C 2 (¢
the existing map. 4.2 Dempster-Shafer Theory

e P? is the conditional probability that a sensor would The second method concerns Dempster-Shafer theory of
return the sensor reading given the state of the cell lsvidence. This theory was proposed by Glenn Shafer [5] as
ing occupied. This conditional probability is given byan extension of the work presented in [6] and [7].
the probabilistic sensor mod@Py? (9, ¢, 7)). Dempster-Shafer theory is mainly characterized by a
frame of discernmentFFOD = ©), a basic probability
e P?isthe conditional probability that a cell is occupie@issignment functioribpa), a belief function(Bel) and a
based on the past sensor readings. It is the new egfhusibility (PL.S) function. These are tied together via the
mate. so-called Dempster’s rule of combination [8].
Each proposition ir® is called a singleton2® is called
A new sensor reading, introduces additional informatigpe power set 0. Any subset of© is called a hypoth-
about the state of the cefl; ;. This information is done gsjs. Applying the notion of frames of discernment to an
by the sensor modéPy and it is combined with the mostoccupancy grid yields a set of framés ; = {o,e}; where
recent probability estimate stored in the cell. This comt;i,-j represents an individual cell in the grid. Let de-
nation is done by the recursive Bayes' rule based on thste the subsets of the power setaffii = 2{oet =
current set of readings = (r¢, 7t—n, ...., 7o) t0 give a new {{@}7 {o}, {e}, {0’6}}; where {@} and {o,¢} are the
estimateP?. It is worth noting that when initializing the empty and thelisjunction or dontknow subsets, respec-
map an equal probability to each céll ; must be assigned.ively. {0} and{e} denote the probabilities of the cell being
In other words, the initial map cell prior probabilities argccupied or empty, respectively. Theantum of beliefs
Ph=1-F; =05YC,;. distributed asBel(A) = m(@) +m(o) +m(e)+m(o,e) =
1, [5]. Finally, the functionm : 2° — [0, 1] is called the
4.1.2 Fusion of Sensors With Two Occupancy Grids  pasic probability assignment. and must satisfy the follow-
In this method, an occupancy grid based on the Bay#3g criteria.
rule is constructed for each sensor type, which will then be
fused to build up the resulting grid map. Afterwards, the Z m(A) =1 (10)
cells in each grid map are modified in order to reinforce the Ac2®
cell probability of being occupied, [14]: m(2) =0 (11)

e The probability of a cell’; ; being occupied is set toEquation (11) reflects the fact that no belief is assigneal. to
one if it is higher than a predefined threshdld In order to obtain the total evidence assigned @ne must

ICS Journal March 2009



add tom(A) the quantitiesn(B) for all proper subset®
of A.

mf =0
Bel(A)= Y m(B) (12) m& =03 VC;eG (18)
VB:BCA : "

In [5], the notion ofplausibility or upper probability of
Alis defined ag — Bel(—A); where(—A) is used to denote  The above assumption means total ignorance about the
the set theoretic complement df Bel(—A) is the disbe- state of each cell. However, when the mobile robot is mov-
lief of the hypothesis ofi. ConsequentlyPls(A) can be jng and gathering data from the environmentit uses this data

thought of as the amount of evidence that does not Supngrhpdate the map using Dempster’s rule of combination
its negation. Allin a”, this sums up to equations 15, 16, and 17.

The lack of ignorance is depicted in the expression (19),
and simply expresses an exact knowledge of the environ-

Pls(A)=1-Bel(=A)=1— > m(B) (13) ment
VB:BZ A
. . G G _1q
Notice thatBel(A) < Pls(A) for any givenA. me + Mg VO, - € G (19)
The above assumptions brings up with a formulation of a mfe = "

formal Dempster’s rule of combination.

SupposeBel; and Bely are belief functions over the
same frame of discernmefi, with basic probability as-
signment in each focal element, efgn(4,),- - -, m(Ax)}
and{m(By), - - -,m(B;)} respectively. The belief function
given bym/(C},) is called orthogonal sum d8el; andBel2

5 Path Planning Using Potential
Field

The main idea of potential field is to discretize the con-

and is represented d%cl; @ Bel2,

ZVA,-,,Bj@@i,J‘ tA;NB;=C;Cr £0 m(Ai)m(Bj)

1 =2 va,.B,e2905:4,08,—0 M(Ai)m(Bj)
(14)

m(Cy) =

figuration spacé/V of the robotA into a regular grid and
search for an appropriate pathwithin that grid. In this
approach, the robot is considered as a particle in the con-
figuration space moving under the influence of an artificial
potential fieldU. The potential field consists of the sum of

Some remarks are drawn. These two belief functions am attractive potential field generated by the goal and a re-
independent and have at least one focal element in comnqarisive potential generated by the obstacles [18], as seen i
The two belief functions can be combined by finding thequation (20).

focal intersections for eact’,, whereC is the set of all

subsets produced by; N B;. The denominator in equation _
14 is the normalisation term. U(9) = Uart(q) + Urep(d)

When using Dempster’s rL_JIe qf combinf_ition to update\/\ﬂ]ereq’: [z, y,6]T (a compact set closed and bounded in
grid map for each cell; ; lying in the main lobe of the )y which is the current state of the robot (a.kcanfigura-
sonar model and for each interpreted sensor reading, gl An example of an attractive and a repulsive potential
tion (14) becomes: field functions can be depicted in equations 21 and 22.

(20)

o mEmE 4y mEms, A mEmE |
mn 1 —m&msS —m&ms3 Uatt(q) = 55030a1(® (21)
memZ +mgmy , +mgm? 2

me = TGS G S (16) inl -t - 1L if p(q) <p

1 —m&ms —mGm? Urep(q) = 21\ (@ ~ po = F0; (22)
0 if
o s p(q) > po,
mo_’e o mo,emo,e (17)

1—m&ms —m&m?S Where¢ andn are a positive scaling factorsyg.,; de-

notes the Euclidean distance between the current and the
The quantitiesn;, m; andm; . are obtained from sen-goal configurations, i.el7 — Gyoall. p(p is the Euclidean
sor models, whilenS', m& andmS, are obtained from the distance from the current configuration of the rofto the
existing grid map. Note thah$, = 1 — mS — m&, and obstacle regio@B. po is the maximum distance of influ-

mJ, = 1—m5 —mJ. m° m°, andm®* are the new ence, i.e. itis the distance from the center of the obstacle t
updates. All cellsC; ; in the Shafer grid map are initial-the boundary of the obstacle region.
ized as stated in (18) since there isapriori knowledge of  The force to attract and repulse the robot can be obtained

evidence. from the negated gradient of the potential.

ICS Journal March 2009



F=-VU(@Q=—| ofp
Oy
Wart(@) OUrep(d) ]

ox ox
9Uqrt (@ + 8U’V‘6P(q)

oU(q) ]

oy oy (a)
a1t () OUvrep(d)
=—| ki |~ | wia@
oy oy
= ﬁatt(q_) + ﬁrep(‘j) (23)

The potential field can be obtained mathematically wh
the position of the obstacles are precisely identified. T
obstacles generate a repulsive potential field which ma
the robot navigate far from the obstacles. The other ¢
tion considered in this article consists of moving the rob
through the obstacles generated by, applying the sensor fu- (c) (d)
sion techniques (Bayes and Dempster’s rules) to the sensor
readings. The attractive potential field is added to the gogure 7: (a) Pioneer3AT from ActiveMedia Robotics. (b)

tential field generated from the environment using sendétyout of the laboratory/office. (c) Represents the map of
readings. the laboratory/office based laser readings. (d) The map of

the laboratory/office embedded into the laser map.

6 Experimental Results

A Pioneer3AT from ActiveMedia Robotics, as shown in

figure 7(a), serves as an experimental testbed. It proviﬁlt% numerous enough to construct a dense_r map of the lab-
data by using a ring of6 ultrasonic sensors, a stereo yioratory. However, the map presents very important infor-

sion system and a laser rangefinder. The laser rangefigggor_}ﬁbom narrow free_ sp_?cets (tjhgt t?/?n beﬂ? e?n in figure

was used for the purpose of evaluating the incoming d - 1€ narrow space Is situated between the two rooms

a&i detected correctly. It can also be seen in this figure
't

from the sonar and the stereo pair of cameras respectiv th SIFT-feat hich h b lotted
The experiment was carried out in a typical laboratory en-"". ere are some -leatures which have been plotte
vironment, the layout of which can be depicted in figu utside the layout of the laboratory. The reason being that
7(b) Figu1re 7(c) shows the grid created only from las ere is a natural limitation in the implemented technigiie o
rangefinder data. This picture demonstrates the shapé ngIFT-aIgor!tthhgre some descriptors are notmat_ched
grrectly causing a misreading, consequently producing a

the room. The layout of the laboratory is embedded into t lot or in oth d ot outside of the laborat
laser map as, seenin figure 7(d). It can be seen that the | é(grpo or in othér words a piot outside of the laboratory

map is quite accurate when compared with the layout of {ygp- In can also be obsgrv_ed that many featurgs_ where de-
laboratory. For this reason it is utilized as a reference.m cted over the desks. This is due to the stereo vision system

The experiments consist of gatheriBg measurements eing placed at different level than the sonar ring as seen in

during the robots’ motion. A sonar array measurement cJW—ure (a).

sists of gatherind6 sonar readings. A vision measurement The whole picture of the sonar data fusion process can be

consists of a single snapshot. Finally, a laser measurentgpicted in figure 8(b) which shows the grid created only

consists of gathering60 readings. from sonar data and in figure 8(e) a layout of the laboratory
is embedded in the sonar map. It can be noticed that the

6.1 Experiments based on Bayes Theory space before and inside the door, i.e. the space between the

This section presents the experiment results of map mio rooms is_poorly detect_ed. Usually, the sonar system has
ing based on SIFT-features descriptors, sonar readings grﬂfoblem with the detection of doors and similarly shape

the fusion over the sonar and SIFT-descriptors maps us row places. This phenomenon is created by the shape
the recursive Bayes' formula. ofthe sonar beam. It can also be observed that the number

Matching descriptors were found in each stereo pair %ffdetected objects over the desks is smaller than the SIFT-

images by the SIFT-algorithm. Figure 8(a) represents P

result of the process in which the SIFT-descriptors match-Figure 8(c) shows the result of applying the method
ing each stereo image were fused and plotted. This procetsdéed in 4.1.2. It can be seen that the empty as well as
was made along all the stereo snapshots taken by the rdbetoccupied areas are reinforced when they are compared
on its path. This map is sparse due to the number of sneyith the two individual maps. Figure 8(f) shows the grid
shots taken by the robot during the experiment that wemmbedded into the office’'s map.
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Figure 8: Maps generated from applying Bayes theory
interpreted sensor readings. Top row: (a) SIFT-descrip
map. (b) sonar map. (c) SIFT-sonar fused maps ; Bottc
row: maps with office layout superimposed.

6.2 Experiments based on Dempster-Shafer
Theory

The experiments depicted in figure 9, show the result
applying formulas 15 and 16 to the interpreted sensor raf
readings. The interpretation is done using probabiligtic s
sor models as the ones described in section 3.

Figure 9(a) shows theision — occupied grid, which rep-
resents the evidence of being occupied for the vision sys- ) (k) 0]
tem. The white dots represent an evidence of an area being
occupied. The black color beyond the white dots is a regibigure 9: Maps generated from?, m® and m®*. (a)
where the mobile robot does not know anything about it, i &:sion — occupied map. (b)vision — empty map. (c)
there is a total ignorance. The black area in the middle @pion — dontknow map. (d)sonar — occupied map. (e)
the plot and which is surrounding by the white dots repréenar — empty map. (f) sonar — dontknow map. (g)

sent lack of ignorance and a low evidence of occupationtigion — sonar — occupied map. (h)vision — sonar —
assigned to this region. empty map.(i)vision — sonar — dontknow map. Bottom

row; vision— sonar maps with office layout superimposed.

Figure 9(d) represents thenar — occupied grid, which
represents the evidence of occupation by the sonar ring sys-
tem. The white arcs represent the evidence of an occu-
pied area. The black area inside the arcs or in the mida@i@as from vision and sonar grid maps respectively. The
of the grid represents the empty area or lack of ignorangtate of the black area which surrounds the white area is
meaning thatzero evidence of occupation is assigned tgnknown.
this area. The gray color situated between the white arc¥igure 9(b) represents thesion — empty grid, which
and the empty region is the transition between the occupiegiresents the evidence of being empty for the vision system
and empty regions respectively. The black area beyond #irl empty evidence is explored. At first glance, two color
white arcs represent total ignorance. areas can be distinguished, black and white. The white area
Figure 9(g) shows theonar — vision — occupied grid, is the lack of ignorance, i.e. high empty evidence can be as-
which is the result of fusing theision — occupied grid signed to the cells. But, looking carefully at this areagihc
map from the vision system (figure 9(a)) with thenar — be seen that the white color changes smoothly in compari-
occupied grid from the sonar ring system (figure 9(d)). Bgon to the black i.e. gray color, which represents low evi-
analyzing the figure; it can easily be seen that the evidemmnce of emptiness. The black area beyond the white area
of an occupied area has increased (white color). Uncsignifies total ignorance of evidence and since the dealing
tainty in the occupied region of the sonar beam has bésmith thevision — empty grid the termsn$& andmg’:e are
reduced. The empty area (black area in the middle of ttiscarded from expression 18 in the plotting of this area and
grid) has been reinforced in comparison to the individuaist the termm& is taken into account which gets the value
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of 0. dontknow grid maps embedded into laboratory map re-
Figure 9(e) shows theonar — empty grid, which repre- spectively.

sents the evidence of being empty for the sonar ring system.

The white area represents the empty region. The gray are L .

is the transition between the empty and occupied regions: Mahalanobis Distance Comparison

The black area beyond the white area signifies a total ignoThe Mahalanobis distance measure approach was intro-

rance of evidence. duced by [25] in 1936. It is based on correlations between
Figure 9(h) shows the result of fusing the resultingitndom vectors. It differs from Euclidean distance in that i

vision — empty grid map from the vision system (figuretakes into account the correlations of the data set.

9(b) with the resultingsonar — empty grid map from the  Lets Z# and i be two random vectors, the Mahalanobis

sonar ring system (figure 9(e)). Looking carefully at the figlistanced,, from a vectory to the vector¥ is the distance

ure; it can easily be noticed that the evidence of an emjitym 7 to Z#, the centroid off, weighted according t€,,

area (white color in the middle of the plot) has increased, the covariance matrix af, so that,

the empty area has been reinforced. It can be seen when it

is compared with the individual areas fransion — empty

andsonar — empty grid maps respectively. The black area dy =((F — ) Cx i — T))? (24)
surrounding the white area is the total ignorance. There W here :

is a gray area between the black and white areas which is -

the transition of emptiness (white) to the total of ignomnc 2 :l £ (25)
(black). There are some black zones within the gray area, 2~

which represent strong evidence of occupation. T
Figure 9(c) shows theision — dontknow grid which, Cyx = Z(fi — ) (& — &) (26)
represents the evidence of disjunction for the vision sys- 1
tem. The black area in the middle of the map signifies lack
of ignorance. Although, one can see that the black colorThe Mahalanobis distance from a SIFT, sonar, and, SIFT-
changes smoothly from black (middle of the map) to gr&pgnar vectors to a laser, is computed in the following. The
and then to black (dot pots) and then to white. Representilgments of the SIFT, sonar, and SIFT-sonar vectors are the
ignorance of evidence. coordinates of the occupied cells of their respective maps.
Figure 9(f) shows the result of applying equation 17 tbhe elements of the laser vector are also the coordinates of
the interpreted sonar data which generatessihesr — the occupied cells of its respective map. The laser is taken
dontknow grid. The meaning of the colors are explained idS @ true parameter vector to be compared with the other
the following. The black color means lack of ignorance ary§ctors.
high evidence can be assigned to the empty area. The gralhe Mahalanobis distance is computed in squared units
color is the level of transition from lack of ignorance to toof each observation in the reference samplé unit has a
tal ignorance, meaning that the empty evidence goes fregdue of5 cm which is the size of a single cell in the grid.
being high to low. The dark arcs inside the cones of theA 2D grid plot (lasef& SIFT), which has been generated
sonar beam represent strong evidence of occupation. Plghe laser grid map and the SIFT grid map based on Bayes
white area beyond the cones of the sonar beam represepfyoach, is presented in figure 10(a). The red squares cor-
total ignorance of evidence. respond to the occupied laser cells. The asterisks refresen
Figure 9(i) shows thesonar — vision — dontknow the occupied cells by th&I7T F-descriptor grid map. Each
grid, which is the result of fusing the resultingsion — colour represents a Mahalanobis distance to the laser vec-
dontknow grid map from the vision system (figure9(c)jor. The corresponding colour values of the distances are
with the resultingsonar — dontknow grid map from the represented as a colour bar placed next to the map. Figure
sonar ring system (figure 9(f)). The black area in the middl€(c) depicts the plot of the Mahalabobis distance from fig-
of the plot signifies lack of ignorance. Thus a high degreige 10(a). The same situation for the Dempster approach is
of empty evidence can be assigned to that area. The gilapicted in figures 10(b) and 10(d). A comparison of these
area is the transition from the empty area to the occupig plots reveals that both SIFT-descriptor grids based on
area or in other words, it is the transition from lack of igBayes and Dempster approaches approximate the laser plot.
norance to total ignorance. During the transition, gra ar€he difference stems from the fact that the SIFT-feature al-
and black dots can be seen. The arcs are the occupiedmithm finds features in the scene that the laser is not able
gion of the sonar beam; the more black the arcs are the miordind and vice versa, the lasé&r SIFT (Dempster) dis-
the evidence of the arcs being occupied. The black dots taece plot is significantly less abundant than the laser
the SIFT-features, which reinforce the occupied region SfFT (Bayes) distance plot.
the sonar beam. The white surface means total ignorance dfhe situation where the sonar coordinates vector is taken
evidence. into account to compute the Mahalanobis distance to a laser
Figures 9(j), 9(k) and 9(l) show theision — sonar — coordinates vector can be depicted in figure 11. The colour
occupied, vision — sonar — empty andvision — sonar —  of the asterisks in figures 11(a) and 11(b) are yellow, blue,
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Figure 10: (a) Mahalanobis distance between the SIFAigure 11: (a) Mahalanobis distance between the sonar and
descriptor and Laser maps based on Bayes. (b) Shows da$gr maps based on Bayes. (b) Shows only the Maha-
the Mahalanobis distance from (a). (c) Mahalanobis dignobis distance from (a). (c) Mahalanobis distance be-

tance between the SIFT-descriptor and Laser maps basetivgen the sonar and laser maps based on Dempster. (d)
Dempster. (d) Shows only the Mahalanobis distance fréshows only the Mahalanobis distance from (b).

(b).

e Dempster-Shafer theory allows support for more than
and red, meaning that the Mahalanobis distance mainly os- one proposition at a time, rather than a single hypoth-
cillates from1 to 4.0 square units where few cells are out-  esis as Bayes does.
side of this range. This situation is more clear in figures

11(c) and .11(d) where the concentration of cells is urder | .o uncertainty interval bounded i and Bel al-
square units. lows the lack of data (ignorance) to be modelled ade-
The representation of the occupied cells of the fusion be- quately.
tween the sonar and the SIFT-descriptor maps is presented
in figure 12. The occupied cells are represented by the as-
terisks, and their colours are mainly blue. This means thaf®
the Mahalanobis distance from the SIFT-sonar coordinates
vector to the laser coordinates vector mainly oscillates be
tween% to 3.5 square units.

Table 1 presents the number of occupied cells, the mean
and variance values of the maps that have been analysed in
this subsection. The number of cells in botkion —sonar - a6 1. sSummarises the number of the occupied cells, the
based on Bayes andsion — sonar based on Dempster aP1ean and the variance values of the grid maps.
proaches have been reduced when comparing with individ-
ual sonar sensor maps. This can be attributed to the fact that

Dempster-Shafer theory does not require prior proba-
bilities to function, However it does require some pre-

liminary assignment of masses that reflects the initial
knowledge of the system [27].

when fusing the sonar map with the SIFT-descriptor map, Bayes |
many inaccurate cells are cancelled. Another pointto BOYT— Gyid Map Occupied cells] mean | Variance
is that the mean value concerning theion — sonar map [ ision (SIFT) 083 1.9921 | 0.6948
ba;ed on ngpster’s approaph is less than the one of Bayes:—_~ 4855 16692 | 1.0746
This can be interpreted as thésion — sonar map based on — ——————""""— 2072 18558 | 1.1155
Dempster approach be more accurate to the true laser rag- S

Both vision — sonar based on Dempster and Bayes vati- empster |
ances disperse about its mean with almost the same vdlug?sion (SIFT) 624 2.0990 | 0.8715
Further comparison of table 1 shows that Dempster-Shafer _sonar 5775 1.50995| 0.9356
performs better in terms of definition of an occupied areq. vision — sonar 5712 1.7991 | 1.1184

The success of the Dempster-Shafer method is attributed
to the following characteristics of this method [26]:
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(t;)d - (t;)d - Figure 13: Figures (a), (b), (¢) and (d) depict a path planned

by the algorithm "Depth-first planning”.
Figure 12: (a) Mahalanobis distance between the SIFT-

sonar and laser maps based on Bayes. (b) Shows only the

Mahalanobis distance from (a). (c) Mahalanobis distan@@king and path planning. The work considers the use of
between the SIFT-sonar and laser maps based on DempBffes and Dempster-Shafer rules of combination to inte-

(d) Shows only the Mahalanobis distance from (b). grate sensor readings from a stereo vision system using the
SIFT algorithm and a ring of sonars. The experiments were

verified with real data in a real indoor environment. The
6.4 Path planning Experiments based on Po-experiments show that the use of the SIFT algorithm can
tential Field improve the sonar map and it can be effectively used for
. . . . L robot path planning. When comparing the two fusion tech-
The ‘algorithm implemented in this section is Ca"er(é?ques, Dempster Shafer has better definition of the occu-

_Depf[h-ﬁrst planning [18];. it mainly C.OD.S'StS of _constt_tHC ]Led area than Bayes. On the other hand, the Mahalanobis
ing single segments starting at the initial configuration 5

- N . . distance measure shows that the Dempster approach is more
the robotg;,,;;. The direction of each segment is obtaine .
) : o ; . accurate to the true laser map than the Bayesian approach.
by solving equation 23; this technique simply follows th

: : ; Euture r rch work i | ntrol str i I
steepest descent of the potential function until the goad ¢ uture research work is to apply control strategies toollo

figuration gy, is reached. A drawback of this method ishe path planned by the algorithm.

that the mobile robot may get trapped into a local minimum,
which did not occur in the present simulation. However, siReferences
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