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Abstract – This paper presents and analyses the architec-
ture of a process that can be used for map building and path
planning purposes. This takes into account the uncertainty
inherent in sensor measurements. To this end, Bayesian es-
timation and Dempster-Shafer evidential theory are used
to fuse the sensory information and to update occupancy
and evidential grid maps, respectively. The sensory infor-
mation is obtained from a sonar array and a stereo vision
system. Features are extracted using the Scale Invariant
Feature Transform (SIFT) algorithm. A statistical compar-
ison between both methods based on Mahalanobis distance
measurement is carried out in the fused maps. Finally, the
resulting two evidential maps based on Bayes and Dempster
theories are used for path planning using the potential field
method. The approach is illustrated using actual measure-
ments from a laboratory robot. Both fusion techniques yield
improved results, in comparison to using non-fused maps.

Keywords: Sensor fusion, mobile robots, stereo vision,
sonar, occupancy grids, SIFT, Dempster-Shafer, potential
field.

1 Introduction
In the field of autonomous mobile robots one of the main

requirements is to have the capacity to operate indepen-
dently in uncertain and unknown environments; fusion of
sensory information, map building and path planning are
some of the key capabilities that the mobile robot has to
possess in order to achieve autonomy. Map building must
be performed based on data from sensors; the data in turn
must be interpreted and fused by means of sensor models.
The fusion process can be carried out using various data fu-
sion methods [2]. The result of the fusion of the sensor
information is utilized to construct a map of the robot’s en-
vironment and the robot can then plan its own path, avoid-
ing obstacles along the way.

The sensor fusion data algorithms considered in the
scope of this paper are: Bayesian method, Dempster-
Shafer method, Fuzzy Logic and Artificial Neural Net-

works, [2, 22, 1, 23]. Each sensor fusion method previ-
ously mentioned is unique to some extend. The Bayesian
is the oldest approach and the one with strongest founda-
tion. The Dempster-Shafer method is a recent attempt to
allow more interpretation of what uncertainty is all about.
Both methods offer approaches to some of the fundamental
problems of sensor fusion: information uncertainty, con-
flicts, and incompleteness [24]. Due to this fact, the in-
clination of using Bayes and Dempster-Shafer approaches
have been taken into consideration to carry out the fusion
process along the research in this paper.

This paper extends the work done in [21], where a sen-
sor data fusion approach to map building is presented. The
approach is exemplified by building a map for a laboratory
robot by fusing range readings from a sonar array with land-
marks extracted from stereo vision images using the SIFT
algorithm. The paper also shows that it is feasible to per-
form path planning based on the potential field derived from
maps that have been generated using fused range readings
from the sonar and the vision system.

In this paper, an architecture for a sensor data fusion
application to map building is proposed. It also con-
tributes with the comparison of two sensor fusion tech-
niques: Bayesian Inference and Dempster-Shafer Eviden-
tial theory. The comparison is carried out based on the Ma-
halanobis distance method.

These techniques also yield so-called Occupancy and
Dempster-Shafer grids, respectively, which are internal map
representations that can be used for robot navigation. Occu-
pancy grids were introduced by Elfes in [3, 4]. Dempster-
Shafer grids were proposed in [5], as an alternative to oc-
cupancy grids. Localisation can also be implemented, but it
is not considered in this paper.

The paper is organised as follows. A multilayer hierar-
chical structure for a sensor data fusion is addressed in sec-
tion 2. An overview of sensor models and sensor fusion is
presented in sections 3 and 4, along with the main contribu-
tion of this paper: a novel sensor fusion of Scale Invariant
Feature Transform, a recently developed computer vision
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method [11], and sonar range readings. Section 5 outlines
how the sensor fusion can be employed to generate potential
field for indoor robot path planning upon which, experimen-
tal results are presented in section 6 where experiments are
based on Bayes and Dempster theories, a comparison be-
tween both sensor fusion techniques (Bayes and Dempster)
are showed as well as path planning experiments based Po-
tential field. Finally, the conclusion of this work is summed
up in section 7.

2 Hierarchical Structure
In this section a multilayer hierarchical structure (archi-

tecture) for an application in multisensor data fusion in mo-
bile robots is presented. Figure 1 illustrates how the struc-
ture is divided into layers which is based on the functional
diagram on multisensor integration and fusion shown in
[1, 2].
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Figure 1: Architecture of the map building process.

• Layer1 represents the environment (laboratory) in
which the robot has to navigate and collect data.

• Layer2 presents the sensors used for the task and their
data acquisition. The mobile robot uses sensors to
interact with its environment, the following of which

have been considered in this application are: an ultra-
sonic sound device or sonar (it measures the distance
to objects). A stereo vision system (it takes pairs of
snapshots from the scene during the travel of the mo-
bile robot). A laser range finder is used for evaluating
the incoming data from sonar and vision system, but
not used for the fusion or map building processes.

• Layer3 contains the SIFT algorithm which extracts
features from digital images.

• Layer4 depicts the sensor data models which are nec-
essary to quantify the uncertainty that always comes
with the sensor data.

• Layer5 considers the registration of the sensor data
models into a2D spatial representation which is com-
mon to all sensors. This means that sensor readings
of different modalities must be converted into com-
mon internal representations in advance before the fu-
sion process is carried out. Occupancy and Dempster-
Shafer grids are the two such spatial representations
used in this work.

• Layer6 shows a local map for each type of sensor
which represents a window of the environment around
the robot. The window is normally centered at the
robot’s current position.

• Layer7 addresses the sonar map updating. Every time
the mobile robot gathers data while travelling along its
path, it computes a new local map (Layer6) that can
be used to construct a global map (Layer8). Bayes and
Dempster-Shafer update rules are used in both sonar-
based and stereo-base mapping systems.

• Layer8 deals with a global map which is simply an
abstraction of the entire environment the mobile robot
has been in. This map can then be used to plan an
optimal path for the robot from its initial state to a goal
state.

• Layer9 shows the integration of data provided by two
qualitative different sensors; the sensor data fusion is
carried out by integrating the two maps into one [14].

• Layer10 concerns itself with the path planning ap-
proach based on the potential field derived from maps
that have been generated using fused range readings
from the sonar and vision systems. Sensor fused
data from both fused modalities (Bayes and Dempster-
Shafer) are compared with each other. The compari-
son is done by applying the Mahalanobis distance to
the maps.

3 Sensor Models
3.1 Sonar Model

A common sensor used to measure distance is the ultra-
sonic range finder, a.k.a. sonar. The sonar can measure the
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distance from the transducer to an object quite accurately.
However, it can not estimate at what angle within the sonar
cone the pulse was reflected. Hence, there will be some
uncertainty about the angle at which the obstacle was mea-
sured. A wide range of sonar models have been developed
in the past years by various researchers, [3], [4], [12], and
[15]. Taking the starting point in these methods, a gridG

of cells Ci,j , 1 ≤ i = x ≤ xmax, 1 ≤ j = y ≤ ymax is
defined in front of the sensor.

Consider the representation of the sonar beam cone
shown in figure 2, where the sonar beam is formulated as
two probability density functions. These functions measure
the confidence and uncertainty of an empty and occupied
region in the cone beam of the sonar respectively. They are
defined based on the geometrical aspect and the spatial sen-
sitivity of the sonar beam.

y

ǫ

rSonar φ

µ

δ

Ψ

Ci,j

Figure 2: Sonar Model

Let Ψ denote the top angle of the cone in the horizontal
plane and letφ denote the (unknown) angle from the center-
line of the beam to the grid cellCi,j . Let r denote a sonar
range measurement andǫ the mean sonar deviation error.
The valueµ in the sonar model represents the minimal mea-
surement andδ is the distance from the sonar to the cell. Us-
ing µ, the sonar model can combine quadratic and exponen-
tial distributions in the empty probability region of the sonar
model [15]. ThenP e

s (δ, φ, r) = Fs(δ, r)An(φ) represents
the probability of the cellCi,j (translated from polar coordi-
nates (r, φ)) being empty, andP o

s (δ, φ, r) = Os(δ, r)An(φ)
represents the probability of the cellCi,j being occupied.
The factorsFs, Os andAn(φ) are given by equations 1, 2
and 3, [15].

Fs(δ, r) =







1 −
(

δ
r

)2
, if δ ∈ [0, µ]

eδ, if δ ∈ [µ, r − ǫ]
0 otherwise

(1)

Os(δ, r) =

{

(

1
r

)

(

1 −
(

δ−r
ǫ

)2
)

, if δ ∈ [r − ǫ, r + ǫ]

0 otherwise
(2)

and

An(φ) =

{

1 −
(

2φ
Ψ

)2

, if φ ∈
[

−Ψ
2 , Ψ

2

]

0 otherwise
(3)

3.2 Vision-SIFT-descriptor Model
3.2.1 SIFT

The other sensor used for sensor fusion in this study is a
stereo vision system. In particular, the Scale Invariant Fea-
ture Transform (SIFT) is a method for extracting distinctive
invariant features from digital images [11]. The features are
invariant to scaling and rotation. They also provide a ro-
bust matching across a substantial range of affine distortion,
change in3D view point, addition of noise and change in
illumination. Furthermore, the features are distinctive,i.e.
they can be matched with high probability to other features
in a large database with many images. The SIFT algorithm
consists of the following major steps:

• Scale-space peak detection: the aim of this step is to
find locations in the image that are invariant to scale
change in the same image.

• Accurate key-point localization: in this step the posi-
tion of each point candidate is determined; points with
low contrast and poor localization along the edge are
removed. This yields a so-called descriptor at each
point.

• Majority orientation assignment: this step makes the
rotation descriptor invariant. This is done by assigning
a consistent orientation to each key-point.

• Computation of the local image descriptor: this step
associates each feature point with a 128-element fea-
ture vector or interest point descriptor that uniquely
identifies that point.

Once the descriptors are found in each image, i.e. left and
right images, a matching algorithm is applied in both im-
ages. Figure 3 presents the matching features descriptors
which have been identified from a stereo pair of images.

Figure 3: Descriptor matches between left and right images.

3.3 SIFT-descriptor model
3.3.1 Camera Model

The camera model used is the so-called perspective or
pinhole model. This model can be seen in the left part of
the figure 4. It represents the camera by its optical center
Cl, an image planeπ, the camera frame, the focal length
f , the optical axes and the principal point(Ox, Oy). A 3D
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Figure 4: The figure shows in the left part the perspective
or pinhole model and also the triangulation.

vectorM = [X, Y, Z]T in a real world coordinate frame
which pointM = (X, Y, Z) is projected into the image
plane or camera frame as the vector~ml = [x, y, z]T .

3.3.2 Triangulation

The triangulation algorithm outlined in [20] has been im-
plemented in order to obtain the depth of the matching SIFT
descriptors.The problem of this algorithm is to determine
the midpoint of the vector of the segment parallel to the
vector~n that joins~l = aml, and~r = ~T + bRT ~mr, where
a ∈ R, andb ∈ R, as it is shown in figure 4. The3D co-
ordinates of each descriptor can be obtained by solving the
equation (4), and the coefficientsa, b, c can be obtained by
solving the linear system (5). TheZ component in equation
(4) represents the depth to the pointM .

~M = [X, Y, Z]T = a~ml +
1

2
c(~mr × ~mr) (4)

a~ml − bRT + c(~ml × RT ~mr) = ~T (5)

R and ~T are defined as the intrinsic and extrinsic pa-
rameters of the stereo system, where,R = RlR

T
r and

~T = ~Tr − RT ~Tl. (~Tl, Rl) and (~Tr, Rr) are the intrin-
sic and extrinsic parameters of the two cameras in the world
reference frame. These parameters have been obtained from
the Matlab Camera Calibration Toolbox using single cam-
era calibration.~ml and~mr are the projection vectors of the
3D point into the left and right image planes respectively.

3.3.3 Stereo Triangulation Error

Due to the factors of quantification and calibration errors,
a certain degree of uncertainty must be expected in the tri-
angulation. Mathies and Shafer [13] shows how to model
and calculate the triangulation error in stereo matched with
3D normal distributions. Geometrically these uncertainties

translate into ellipsoidal regions. The stereo uncertainty er-
ror and the3D Gaussian distribution can be depicted as in
figures 5(a) and 5(b).

M

(a) (b)

Uncertainty region

Gaussian uncertainty region

zz
Pixel size

Xl Xr
Left camera Right camera

Figure 5: ((a) Stereo Geometry showing triangulation un-
certainty as a diamond around a pointM . It also shows
the empty region uncertainty from the pair of cameras to
the uncertainty region of the pointM . (b) 2D dimensional
Gaussian distribution uncertainty region.

In the following, the details of the triangulation error
modelling are shown, [13]. Consider a3D point M =
(X, Y, Z), which is projected onto the left and right image
planes respectively as~ml = [xl, yl] and ~mr = [xr , yr] as
they can be depicted in figure 4. These vectors are assumed
to be normally distributed with meansµl andµr and covari-
ance matricesVl andVr. The covariance matrixVp of the
pointM is shown in equation 6, [13].

Vp=J

[

Vl 0
0 Vr

]

JT (6)

Where J is the jacobian of first partial derivatives of
f(ml, mr) = M . These equations can be obtained by solv-
ing the equation (4).

The empty regions from the left and right cameras as
shown as shadow areas in figure 5(a) also need to be mod-
elled. The approach taken by Elfes in [3] to model the
empty region of the sonar beam has been taken into consid-
eration and implemented with satisfactory results which can
be depicted as in figures 6(a) and 6(b). Figure 6(a) shows a
3D probability SIFT-descriptor model. Figure 6(b) shows a
2D view of the3D model.

4 Sensor Fusion
In the following, two different sensor fusion techniques

are applied:1) Bayesian theory and2) Dempster-Shafer
theory of evidence.
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(a) (b)

Figure 6: (a)3D view of the SIFT-descriptor probabil-
ity model. (b)2D view of the SIFT-descriptor probability
model.

4.1 Bayes Theory
4.1.1 Bayes Update Formula

Elfes and Matthies [3] have proposed in their previ-
ous work the use of a recursive Bayes formula to up-
date the occupancy grid for multiple sensor observations
(r1, ....., rt, rt+1). When this formula is transferred to the
occupancy grid framework, the following is obtained:

P o =
P o

s P o
m

P o
s P o

m + (1 − P o
s )(1 − P o

m)
(7)

• P o
m and1−P o

m are the prior probabilities that a cell is
occupied and empty respectively; they are taken from
the existing map.

• P o
s is the conditional probability that a sensor would

return the sensor reading given the state of the cell be-
ing occupied. This conditional probability is given by
the probabilistic sensor model(P o

s (δ, φ, r)).

• P o is the conditional probability that a cell is occupied
based on the past sensor readings. It is the new esti-
mate.

A new sensor reading, introduces additional information
about the state of the cellCi,j . This information is done
by the sensor modelP o

s and it is combined with the most
recent probability estimate stored in the cell. This combi-
nation is done by the recursive Bayes’ rule based on the
current set of readingsrt = (rt, rt−n, ...., r0) to give a new
estimateP o. It is worth noting that when initializing the
map an equal probability to each cellCi,j must be assigned.
In other words, the initial map cell prior probabilities are
P o

m = 1 − P o
m = 0.5 ∀Ci,j .

4.1.2 Fusion of Sensors With Two Occupancy Grids

In this method, an occupancy grid based on the Bayes’
rule is constructed for each sensor type, which will then be
fused to build up the resulting grid map. Afterwards, the
cells in each grid map are modified in order to reinforce the
cell probability of being occupied, [14]:

• The probability of a cellCi,j being occupied is set to
one if it is higher than a predefined thresholdTo.

• The probability of a cellCi,j being occupied is rein-
force if it is between the interval[ 12 , To]. The rein-
forcement strength the probability of a cell being oc-
cupied.

• Otherwise the value in the cellCi,j remains.

More precisely, the resulting grid map is computed in two
steps.

Firstly, probability values in the grid maps are modified
for each sensor type using the following expression:

P o
n=1,2(c) =







1 for P o(c) > To,
P o(c)+To−1

2·To−1 for P o(c) ∈ [ 12 , To]

P o(c) otherwise
(8)

WhereP o(c) is the probability of the cellCi,j being occu-
pied. P o

1 (c) is the modified probability of occupancy from
the first sensor andP o

2 (c) is the modified probability of oc-
cupancy from the second sensor.

Secondly, the computed values are then inserted in
Bayes’ rule to obtain the occupied fused probabilityP o

f (c)
of the cellCi,j in the resulting grid.

P o
f (c) =

P o
1 (c)P o

2 (c)

P o
1 (c)P o

2 (c) + (1 − P o
1 (c)(1 − P o

2 (c))
(9)

4.2 Dempster-Shafer Theory
The second method concerns Dempster-Shafer theory of

evidence. This theory was proposed by Glenn Shafer [5] as
an extension of the work presented in [6] and [7].

Dempster-Shafer theory is mainly characterized by a
frame of discernment(FOD = Θ), a basic probability
assignment function(bpa), a belief function(Bel) and a
plausibility(PLS) function. These are tied together via the
so-called Dempster’s rule of combination [8].

Each proposition inΘ is called a singleton.2Θ is called
the power set ofΘ. Any subset ofΘ is called a hypoth-
esis. Applying the notion of frames of discernment to an
occupancy grid yields a set of framesΘi,j = {o, e}; where
i, j represents an individual cell in the grid. LetA de-
note the subsets of the power set of2Θi,j = 2{o,e} =
{

{∅}, {o}, {e}, {o, e}
}

; where {∅} and {o, e} are the
empty and thedisjunction or dontknow subsets, respec-
tively. {o} and{e} denote the probabilities of the cell being
occupied or empty, respectively. Thequantum of beliefis
distributed asBel(A) = m(∅)+m(o)+m(e)+m(o, e) =
1, [5]. Finally, the functionm : 2Θ → [0, 1] is called the
basic probability assignment. and must satisfy the follow-
ing criteria.

∑

A⊂2Θ

m(A) = 1 (10)

m(∅) = 0 (11)

Equation (11) reflects the fact that no belief is assigned to∅.
In order to obtain the total evidence assigned toA, one must
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add tom(A) the quantitiesm(B) for all proper subsetsB
of A.

Bel(A) =
∑

∀B:B⊆A

m(B) (12)

In [5], the notion ofplausibility or upper probability of
A is defined as1−Bel(¬A); where(¬A) is used to denote
the set theoretic complement ofA. Bel(¬A) is the disbe-
lief of the hypothesis ofA. Consequently,Pls(A) can be
thought of as the amount of evidence that does not support
its negation. All in all, this sums up to

Pls(A) = 1 − Bel(¬A) = 1 −
∑

∀B:B 6⊂A

m(B) (13)

Notice thatBel(A) ≤ Pls(A) for any givenA.
The above assumptions brings up with a formulation of a

formal Dempster’s rule of combination.
SupposeBel1 and Bel2 are belief functions over the

same frame of discernmentΘ, with basic probability as-
signment in each focal element, e.g.{m(A1), · · ·, m(Ak)}
and{m(B1), · · ·, m(Bl)} respectively. The belief function
given bym(Ck) is called orthogonal sum ofBel1 andBel2
and is represented asBel1 ⊕ Bel2,

m(Ck) =

∑

∀Ai,Bj∈2Θi,j :Ai∩Bi=Ck;Ck 6=∅ m(Ai)m(Bj)

1 −
∑

∀Ai,Bj∈2Θi,j :Ai∩Bj=∅ m(Ai)m(Bj)

(14)
Some remarks are drawn. These two belief functions are
independent and have at least one focal element in common.
The two belief functions can be combined by finding the
focal intersections for eachCk, whereC is the set of all
subsets produced byAi ∩Bj . The denominator in equation
14 is the normalisation term.

When using Dempster’s rule of combination to update a
grid map for each cellCi,j lying in the main lobe of the
sonar model and for each interpreted sensor reading, equa-
tion (14) becomes:

mo =
mG

o mS
o + mG

o mS
o,e + mG

o,em
S
o

1 − mG
e mS

o − mG
o mS

e

(15)

me =
mG

e mS
e + mG

e mS
o,e + mG

o,em
S
e

1 − mG
e mS

o − mG
o mS

e

(16)

mo,e =
mG

o,em
S
o,e

1 − mG
e mS

o − mG
o mS

e

(17)

The quantitiesmS
o , mS

e andmS
o,e are obtained from sen-

sor models, whilemG
o , mG

e andmG
o,e are obtained from the

existing grid map. Note thatmG
o,e = 1 − mG

o − mG
e , and

mS
o,e = 1 − mS

o − mS
e . mo, mo, andmo,e are the new

updates. All cellsCi,j in the Shafer grid map are initial-
ized as stated in (18) since there is noapriori knowledge of
evidence.

mG
o = 0

mG
e = 0

mG
o,e = 1











∀Ci,j ∈ G (18)

The above assumption means total ignorance about the
state of each cell. However, when the mobile robot is mov-
ing and gathering data from the environment it uses this data
to update the map using Dempster’s rule of combination
equations 15, 16, and 17.

The lack of ignorance is depicted in the expression (19),
and simply expresses an exact knowledge of the environ-
ment.

mG
o + mG

e = 1

mG
o,e = 0

}

∀Ci,j ∈ G (19)

5 Path Planning Using Potential
Field

The main idea of potential field is to discretize the con-
figuration spaceW of the robotA into a regular grid and
search for an appropriate pathτ within that grid. In this
approach, the robot is considered as a particle in the con-
figuration space moving under the influence of an artificial
potential fieldU . The potential field consists of the sum of
an attractive potential field generated by the goal and a re-
pulsive potential generated by the obstacles [18], as seen in
equation (20).

U(~q) = Uatt(~q) + Urep(~q) (20)

where~q = [x, y, θ]T (a compact set closed and bounded in
W) which is the current state of the robot (a.k.a.configura-
tion). An example of an attractive and a repulsive potential
field functions can be depicted in equations 21 and 22.

Uatt(~q) =
1

2
ξρ2

goal(~q) (21)

Urep(~q) =







1
2η

(

1
ρ(~q) −

1
ρ0

)2

if ρ(~q) ≤ ρ0,

0 if ρ(~q) > ρ0,

(22)

Whereξ andη are a positive scaling factors.ρgoal de-
notes the Euclidean distance between the current and the
goal configurations, i.e.‖~q − ~qgoal‖. ρ(~q) is the Euclidean
distance from the current configuration of the robot~q to the
obstacle regionCB. ρ0 is the maximum distance of influ-
ence, i.e. it is the distance from the center of the obstacle to
the boundary of the obstacle region.

The force to attract and repulse the robot can be obtained
from the negated gradient of the potential.
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~F = −∇U(~q) = −

[

∂U(~q)
∂x

∂U(~q)
∂y

]

= −

[

∂Uatt(~q)
∂x

+
∂Urep(~q)

∂x
∂Uatt(~q)

∂y
+

∂Urep(~q)
∂y

]

= −

[

∂Uatt(~q)
∂x

∂Uatt(~q)
∂y

]

−

[

∂Urep(~q)
∂x

∂Urep(~q)
∂y

]

= ~Fatt(~q) + ~Frep(~q) (23)

The potential field can be obtained mathematically when
the position of the obstacles are precisely identified. The
obstacles generate a repulsive potential field which makes
the robot navigate far from the obstacles. The other op-
tion considered in this article consists of moving the robot
through the obstacles generated by, applying the sensor fu-
sion techniques (Bayes and Dempster’s rules) to the sensor
readings. The attractive potential field is added to the po-
tential field generated from the environment using sensor
readings.

6 Experimental Results
A Pioneer3AT from ActiveMedia Robotics, as shown in

figure 7(a), serves as an experimental testbed. It provides
data by using a ring of16 ultrasonic sensors, a stereo vi-
sion system and a laser rangefinder. The laser rangefinder
was used for the purpose of evaluating the incoming data
from the sonar and the stereo pair of cameras respectively.
The experiment was carried out in a typical laboratory en-
vironment, the layout of which can be depicted in figure
7(b). Figure 7(c) shows the grid created only from laser
rangefinder data. This picture demonstrates the shape of
the room. The layout of the laboratory is embedded into the
laser map as, seen in figure 7(d). It can be seen that the laser
map is quite accurate when compared with the layout of the
laboratory. For this reason it is utilized as a reference map.

The experiments consist of gathering30 measurements
during the robots’ motion. A sonar array measurement con-
sists of gathering16 sonar readings. A vision measurement
consists of a single snapshot. Finally, a laser measurement
consists of gathering360 readings.

6.1 Experiments based on Bayes Theory
This section presents the experiment results of map mak-

ing based on SIFT-features descriptors, sonar readings and
the fusion over the sonar and SIFT-descriptors maps using
the recursive Bayes’ formula.

Matching descriptors were found in each stereo pair of
images by the SIFT-algorithm. Figure 8(a) represents the
result of the process in which the SIFT-descriptors match-
ing each stereo image were fused and plotted. This process
was made along all the stereo snapshots taken by the robot
on its path. This map is sparse due to the number of snap-
shots taken by the robot during the experiment that were

(a) (b)

(c) (d)

Figure 7: (a) Pioneer3AT from ActiveMedia Robotics. (b)
Layout of the laboratory/office. (c) Represents the map of
the laboratory/office based laser readings. (d) The map of
the laboratory/office embedded into the laser map.

not numerous enough to construct a denser map of the lab-
oratory. However, the map presents very important infor-
mation about narrow free spaces that can be seen in figure
8(d). The narrow space is situated between the two rooms
and detected correctly. It can also be seen in this figure
that there are some SIFT-features which have been plotted
outside the layout of the laboratory. The reason being that
there is a natural limitation in the implemented technique of
the SIFT-algorithm where some descriptors are not matched
correctly causing a misreading, consequently producing a
bad plot or in other words a plot outside of the laboratory
map. In can also be observed that many features where de-
tected over the desks. This is due to the stereo vision system
being placed at different level than the sonar ring as seen in
figure 7(a).

The whole picture of the sonar data fusion process can be
depicted in figure 8(b) which shows the grid created only
from sonar data and in figure 8(e) a layout of the laboratory
is embedded in the sonar map. It can be noticed that the
space before and inside the door, i.e. the space between the
two rooms is poorly detected. Usually, the sonar system has
a problem with the detection of doors and similarly shape
narrow places. This phenomenon is created by the shape
of the sonar beam. It can also be observed that the number
of detected objects over the desks is smaller than the SIFT-
map.

Figure 8(c) shows the result of applying the method
stated in 4.1.2. It can be seen that the empty as well as
the occupied areas are reinforced when they are compared
with the two individual maps. Figure 8(f) shows the grid
embedded into the office’s map.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Maps generated from applying Bayes theory to
interpreted sensor readings. Top row: (a) SIFT-descriptor
map. (b) sonar map. (c) SIFT-sonar fused maps ; Bottom
row: maps with office layout superimposed.

6.2 Experiments based on Dempster-Shafer
Theory

The experiments depicted in figure 9, show the result of
applying formulas 15 and 16 to the interpreted sensor range
readings. The interpretation is done using probabilistic sen-
sor models as the ones described in section 3.

Figure 9(a) shows thevision−occupied grid, which rep-
resents the evidence of being occupied for the vision sys-
tem. The white dots represent an evidence of an area being
occupied. The black color beyond the white dots is a region
where the mobile robot does not know anything about it, i.e.
there is a total ignorance. The black area in the middle of
the plot and which is surrounding by the white dots repre-
sent lack of ignorance and a low evidence of occupation is
assigned to this region.

Figure 9(d) represents thesonar− occupied grid, which
represents the evidence of occupation by the sonar ring sys-
tem. The white arcs represent the evidence of an occu-
pied area. The black area inside the arcs or in the middle
of the grid represents the empty area or lack of ignorance,
meaning thatzero evidence of occupation is assigned to
this area. The gray color situated between the white arcs
and the empty region is the transition between the occupied
and empty regions respectively. The black area beyond the
white arcs represent total ignorance.

Figure 9(g) shows thesonar − vision − occupied grid,
which is the result of fusing thevision − occupied grid
map from the vision system (figure 9(a)) with thesonar −
occupied grid from the sonar ring system (figure 9(d)). By
analyzing the figure; it can easily be seen that the evidence
of an occupied area has increased (white color). Uncer-
tainty in the occupied region of the sonar beam has been
reduced. The empty area (black area in the middle of the
grid) has been reinforced in comparison to the individual

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9: Maps generated frommo, me and mo,e. (a)
vision − occupied map. (b)vision − empty map. (c)
vision − dontknow map. (d)sonar − occupied map. (e)
sonar − empty map. (f) sonar − dontknow map. (g)
vision − sonar − occupied map. (h)vision − sonar −
empty map.(i)vision− sonar − dontknow map. Bottom
row; vision−sonar maps with office layout superimposed.

areas from vision and sonar grid maps respectively. The
state of the black area which surrounds the white area is
unknown.

Figure 9(b) represents thevision − empty grid, which
represents the evidence of being empty for the vision system
and empty evidence is explored. At first glance, two color
areas can be distinguished, black and white. The white area
is the lack of ignorance, i.e. high empty evidence can be as-
signed to the cells. But, looking carefully at this area, it can
be seen that the white color changes smoothly in compari-
son to the black i.e. gray color, which represents low evi-
dence of emptiness. The black area beyond the white area
signifies total ignorance of evidence and since the dealing
is with thevision−empty grid the termsmG

o andmG
o,e are

discarded from expression 18 in the plotting of this area and
just the termmG

e is taken into account which gets the value
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of 0.
Figure 9(e) shows thesonar− empty grid, which repre-

sents the evidence of being empty for the sonar ring system.
The white area represents the empty region. The gray area
is the transition between the empty and occupied regions.
The black area beyond the white area signifies a total igno-
rance of evidence.

Figure 9(h) shows the result of fusing the resulting
vision − empty grid map from the vision system (figure
9(b) with the resultingsonar − empty grid map from the
sonar ring system (figure 9(e)). Looking carefully at the fig-
ure; it can easily be noticed that the evidence of an empty
area (white color in the middle of the plot) has increased, i.e
the empty area has been reinforced. It can be seen when it
is compared with the individual areas fromvision−empty

andsonar− empty grid maps respectively. The black area
surrounding the white area is the total ignorance. There
is a gray area between the black and white areas which is
the transition of emptiness (white) to the total of ignorance
(black). There are some black zones within the gray area,
which represent strong evidence of occupation.

Figure 9(c) shows thevision − dontknow grid which,
represents the evidence of disjunction for the vision sys-
tem. The black area in the middle of the map signifies lack
of ignorance. Although, one can see that the black color
changes smoothly from black (middle of the map) to gray
and then to black (dot pots) and then to white. Representing
ignorance of evidence.

Figure 9(f) shows the result of applying equation 17 to
the interpreted sonar data which generates thesonar −
dontknow grid. The meaning of the colors are explained in
the following. The black color means lack of ignorance and
high evidence can be assigned to the empty area. The gray
color is the level of transition from lack of ignorance to to-
tal ignorance, meaning that the empty evidence goes from
being high to low. The dark arcs inside the cones of the
sonar beam represent strong evidence of occupation. The
white area beyond the cones of the sonar beam represents
total ignorance of evidence.

Figure 9(i) shows thesonar − vision − dontknow

grid, which is the result of fusing the resultingvision −
dontknow grid map from the vision system (figure9(c))
with the resultingsonar − dontknow grid map from the
sonar ring system (figure 9(f)). The black area in the middle
of the plot signifies lack of ignorance. Thus a high degree
of empty evidence can be assigned to that area. The gray
area is the transition from the empty area to the occupied
area or in other words, it is the transition from lack of ig-
norance to total ignorance. During the transition, gray arcs
and black dots can be seen. The arcs are the occupied re-
gion of the sonar beam; the more black the arcs are the more
the evidence of the arcs being occupied. The black dots are
the SIFT-features, which reinforce the occupied region of
the sonar beam. The white surface means total ignorance of
evidence.

Figures 9(j), 9(k) and 9(l) show thevision − sonar −
occupied, vision− sonar− empty andvision− sonar−

dontknow grid maps embedded into laboratory map re-
spectively.

6.3 Mahalanobis Distance Comparison
The Mahalanobis distance measure approach was intro-

duced by [25] in 1936. It is based on correlations between
random vectors. It differs from Euclidean distance in that it
takes into account the correlations of the data set.

Lets ~x and~y be two random vectors, the Mahalanobis
distancedM from a vector~y to the vector~x is the distance
from ~y to ~̂x, the centroid of~x, weighted according toCx,
the covariance matrix of~x, so that,

dM =((~y − ~̂x)′Cx

−1(~y − ~̂x))
1

2 (24)

Where :

~̂x =
1

2

nx
∑

i=1

~xi (25)

Cx =
1

nx − 1

nx
∑

1

(~xi − ~̂x)(~xi − ~̂x)′ (26)

The Mahalanobis distance from a SIFT, sonar, and, SIFT-
sonar vectors to a laser, is computed in the following. The
elements of the SIFT, sonar, and SIFT-sonar vectors are the
coordinates of the occupied cells of their respective maps.
The elements of the laser vector are also the coordinates of
the occupied cells of its respective map. The laser is taken
as a true parameter vector to be compared with the other
vectors.

The Mahalanobis distance is computed in squared units
of each observation in the reference sample~x. A unit has a
value of5 cm which is the size of a single cell in the grid.

A 2D grid plot (laser& SIFT), which has been generated
by the laser grid map and the SIFT grid map based on Bayes
approach, is presented in figure 10(a). The red squares cor-
respond to the occupied laser cells. The asterisks represent
the occupied cells by theSITF -descriptor grid map. Each
colour represents a Mahalanobis distance to the laser vec-
tor. The corresponding colour values of the distances are
represented as a colour bar placed next to the map. Figure
10(c) depicts the plot of the Mahalabobis distance from fig-
ure 10(a). The same situation for the Dempster approach is
depicted in figures 10(b) and 10(d). A comparison of these
two plots reveals that both SIFT-descriptor grids based on
Bayes and Dempster approaches approximate the laser plot.
The difference stems from the fact that the SIFT-feature al-
gorithm finds features in the scene that the laser is not able
to find and vice versa, the laser& SIFT (Dempster) dis-
tance plot is significantly less abundant than the laser&
SIFT (Bayes) distance plot.

The situation where the sonar coordinates vector is taken
into account to compute the Mahalanobis distance to a laser
coordinates vector can be depicted in figure 11. The colour
of the asterisks in figures 11(a) and 11(b) are yellow, blue,
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(a)

(c)

(b)

(d)

Figure 10: (a) Mahalanobis distance between the SIFT-
descriptor and Laser maps based on Bayes. (b) Shows only
the Mahalanobis distance from (a). (c) Mahalanobis dis-
tance between the SIFT-descriptor and Laser maps based on
Dempster. (d) Shows only the Mahalanobis distance from
(b).

and red, meaning that the Mahalanobis distance mainly os-
cillates from1

2 to 4.0 square units where few cells are out-
side of this range. This situation is more clear in figures
11(c) and 11(d) where the concentration of cells is under4
square units.

The representation of the occupied cells of the fusion be-
tween the sonar and the SIFT-descriptor maps is presented
in figure 12. The occupied cells are represented by the as-
terisks, and their colours are mainly blue. This means that
the Mahalanobis distance from the SIFT-sonar coordinates
vector to the laser coordinates vector mainly oscillates be-
tween1

2 to 3.5 square units.

Table 1 presents the number of occupied cells, the mean
and variance values of the maps that have been analysed in
this subsection. The number of cells in bothvision−sonar

based on Bayes andvision−sonar based on Dempster ap-
proaches have been reduced when comparing with individ-
ual sonar sensor maps. This can be attributed to the fact that,
when fusing the sonar map with the SIFT-descriptor map,
many inaccurate cells are cancelled. Another point to notice
is that the mean value concerning thevision − sonar map
based on Dempster’s approach is less than the one of Bayes.
This can be interpreted as thevision−sonar map based on
Dempster approach be more accurate to the true laser map.
Both vision − sonar based on Dempster and Bayes vari-
ances disperse about its mean with almost the same value.
Further comparison of table 1 shows that Dempster-Shafer
performs better in terms of definition of an occupied area.

The success of the Dempster-Shafer method is attributed
to the following characteristics of this method [26]:
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Figure 11: (a) Mahalanobis distance between the sonar and
laser maps based on Bayes. (b) Shows only the Maha-
lanobis distance from (a). (c) Mahalanobis distance be-
tween the sonar and laser maps based on Dempster. (d)
Shows only the Mahalanobis distance from (b).

• Dempster-Shafer theory allows support for more than
one proposition at a time, rather than a single hypoth-
esis as Bayes does.

• The uncertainty interval bounded byPls andBel al-
lows the lack of data (ignorance) to be modelled ade-
quately.

• Dempster-Shafer theory does not require prior proba-
bilities to function, However it does require some pre-
liminary assignment of masses that reflects the initial
knowledge of the system [27].

Table 1: Summarises the number of the occupied cells, the
mean and the variance values of the grid maps.

Bayes

Grid Map Occupied cells mean Variance
vision (SIFT) 983 1.9921 0.6948

sonar 4855 1.6692 1.0746
vision − sonar 4272 1.8558 1.1155

Dempster

vision (SIFT) 624 2.0990 0.8715
sonar 5775 1.50995 0.9356

vision − sonar 5712 1.7991 1.1184
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(a)

(c)

(b)

(d)

Figure 12: (a) Mahalanobis distance between the SIFT-
sonar and laser maps based on Bayes. (b) Shows only the
Mahalanobis distance from (a). (c) Mahalanobis distance
between the SIFT-sonar and laser maps based on Dempster.
(d) Shows only the Mahalanobis distance from (b).

6.4 Path planning Experiments based on Po-
tential Field

The algorithm implemented in this section is called
”Depth-first planning” [18]; it mainly consists of construct-
ing single segments starting at the initial configuration of
the robot~qinit. The direction of each segment is obtained
by solving equation 23; this technique simply follows the
steepest descent of the potential function until the goal con-
figuration~qgoal is reached. A drawback of this method is
that the mobile robot may get trapped into a local minimum,
which did not occur in the present simulation. However, so-
lutions to the local minima problem exist [19].

Figure 13 shows an example of Depth first path plan-
ning algorithm whereby the potential field approach has
been applied to the maps from figures 8(c), 9(g), 9(h)
and 9(i).According to this, figure 13(a) corresponds to the
vision − sonar (Bayes) map (figure 8(c)). Figure 13(b)
corresponds to thevision − sonar − occupied (Demp-
ster) map (figure 9(g)). Figure 13(c) corresponds to the
vision−sonar−empty (Dempster) map (figure 9(h)). Fig-
ure 13(d) corresponds to thevision − sonar − dontknow

(Dempster) map (figure 9(i)). The shape of the laboratory
environment is embedded into these grid maps where a path
can be seen which connects a start point configuration with
a final goal configuration. The area which surrounds the
path represents the empty region which is bounded by the
occupied area.

7 Conclusion and Future Work
This article presents a multilayer hierarchical structure

(architecture) for multisensor data fusion for robot map

(a)

(c)

(b)

(d)

Figure 13: Figures (a), (b), (c) and (d) depict a path planned
by the algorithm ”Depth-first planning”.

making and path planning. The work considers the use of
Bayes and Dempster-Shafer rules of combination to inte-
grate sensor readings from a stereo vision system using the
SIFT algorithm and a ring of sonars. The experiments were
verified with real data in a real indoor environment. The
experiments show that the use of the SIFT algorithm can
improve the sonar map and it can be effectively used for
robot path planning. When comparing the two fusion tech-
niques, Dempster Shafer has better definition of the occu-
pied area than Bayes. On the other hand, the Mahalanobis
distance measure shows that the Dempster approach is more
accurate to the true laser map than the Bayesian approach.
Future research work is to apply control strategies to follow
the path planned by the algorithm.
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