
 1

Sliding Window Based Resource-Allocating Network

Haikun Wei1 , Xinming Jin2 , and Qi Li1
1. Department of Automatic Control, Southeast University, Nanjing, 210096, China

email: hkwei@seu.edu.cn
2. System Integration Division, LSC Group, Lichfield, WS13 8RZ, UK

email:xij@lsc.co.uk

Abstract: In this paper, a sliding window based resource-allocating network (SW-RAN) for non-linear
dynamic systems is proposed. SW-RAN is an online constructive-pruning hybrid approach for RBFN design.
It adopts the following strategy: adding a new hidden unit if current network performs unsatisfactorily on the
latest observation; otherwise, combining or deleting hidden units while adjusting unit centres and spread
constants. SW-RAN not only makes the neural network online adapt to the changing dynamics of the plant
being modelled, but also maintains a compact network size and guarantees its satisfying generalisation ability.
More importantly, by incorporating the idea of sliding window, in which multiple latest samples are used for
training, SW-RAN performs good robustness against the changes of learning parameters and is easy to
converge. Three benchmark examples demonstrate the effectiveness of the method.
keywords: radial basis function network, sliding window, resource-allocating network, generalisation ability,
non-linear system, online modelling

1. Introduction
In addition to its simple structure and strong approximation ability, feed-forward neural network
does not require complex theoretical analysis. Because of these advantages, it is becoming more
and more widely used in the areas such as non-linear system modelling. As one of its important
applications, feed-forward network is often used for online modelling in practical engineering
projects and adaptive systems.

Among the large number of feed-forward neural networks, Radial Basis Function Network (RBFN)
[1] is one of the most often applied networks in non-linear system modelling. Comparing with
other neural networks such as Multi-Layer Perceptron (MLP), RBFN has a very important
characteristic named local property. The meaning of local property is to activate one or more
hidden units once the neural network produces effective outputs. The local property of RBFN
makes it most suitable for online learning. Because when new observations are continuously
inputted online, the network performance will not be over affected by either adjusting weights or
adding new hidden units. This will help to realise the so-called incremental learning.

There are a number of design methods available for RBFN. Generally, these design methods can
be classified into two categories: i) set unit centres of hidden units as random values [2] or get
them from sample inputs, such as Orthogonal Least Square (OLS) algorithm [3], Regularized
Orthogonal Least Square (ROLS) algorithm [4] and Genetic Algorithm [5]; ii) adjust the positions
of unit centres dynamically during the learning procedure, such as dynamic clustering based
design method [6], Resource-allocating Network)(RAN) [7, 8], and minimal Radial Basis Function
Networks (MRBF) [9, 10, 11, 12]. The common design principle of these methods is to seek a
minimal neural network satisfying the accuracy requirement while maintaining its generalisation
ability [13, 14].

Unfortunately, all the above design methods except RAN and MRBF adopt off-line learning
algorithm. RAN recursively checks all sample input-output pairs during its learning procedure.
When a new sample meets the “novelty” requirement, a new unit is allocated. Two criteria are
defined for the “novelty”: 1) distance criterion: the distance between the current sample input
and its nearest unit centre exceeds a definite value ()tδ ; 2) error criterion: the error between the

 2

network output and the sample output exceeds a definite value mine . If these two criteria are both
satisfied, a new resource will be allocated, which means a new hidden unit will be added. The
unit centre of the new hidden unit is assigned by the input of the current sample. The output weight
is set as the error between the current neural network output and the current sample output. The
spread constant is assigned by the distance between the current sample input and its nearest unit
centre. If the error between the output of the current neural network and the output of the new
sample is comparatively small or the distance between the sample input and the existing unit
centres is not big enough, a new hidden unit will not be allocated. Under such situations, gradient
method or extended Kalman filter will be used to adjust unit centres and weights to further
decrease the errors. MRBF improves the RAN method described in [8]. In addition to satisfying
distance criterion and error criterion, no new hidden unit will be added until the errors between the
output of the current network and previous consecutive samples are all too big. Moreover, a hidden
unit will be deleted if it is not activated in multiple consecutive samples.

Although both RAN and MRBF can realise online learning, they have the following obvious
disadvantages:

1) The algorithm’ robustness to the changes of learning parameters is not satisfying. Take
the value of resolution ()tδ as an example, it is found that when maxδ and minδ ,

especially minδ , have minor changes, the hidden unit number will change dramatically
and even cannot converge. The unsatisfying robustness to the changes of learning
parameters is a big barrier of putting this algorithm into practice since it makes the
learning parameters difficult to be decided.

2) The network generalisation ability cannot be guaranteed. In RAN, a hidden unit cannot

be deleted once it is added. Under the situation of online learning, the network’s hidden
unit number will increase while the learning period continues, although some hidden
units are possibly useless or redundant. In order to satisfy accuracy requirement, the
increasing network scale will not only waste system resources, but also deteriorate the
generalisation ability of the neural network [13, 14]. MRBF supports the deletion of
hidden neurons, but the mechanism of deletion is too simple. Therefore, there are
possibilities that some of the redundant hidden neurons will not be removed while some
valid hidden neurons are deleted by mistakes.

In order to keep the current advantages of RAN and get rid of its addressed disadvantages, a
sliding window based resource-allocating network (SW-RAN) is proposed and its detailed
mechanism will be discussed in the following sections. According to the latest error information,
SW-RAN can optimise system resources to maintain a compact network structure. This will certify
the generalisation ability of the RBFN. SW-RAN optimises resources by online adding new hidden
neurons (allocating new resources), online combining redundant hidden neurons (recombining
resources), and online removing useless hidden neurons (releasing resources). By adopting the
idea of sliding window, SW-RAN appears to have good robustness to the changes of learning
parameters and is easier to converge.

In this paper, three benchmark examples are used to demonstrate the efficiency of SW-RAN. The
example of static function approximation shows that SW-RAN can realise desired target function
with minimal network structure. The example of time-varying non-linear function identification
demonstrates that SW-RAN can online adapt to the time-varying dynamic plant. The
Mackey-Glass chaotic time series prediction exemplifies SW-RAN’s generalisation ability and its
robustness to the variations of learning parameters.

This paper is organised as follows. A brief discussion of current RBFN design methods and related
concepts are presented in Section 1. In Section 2, the basic idea of SW-RAN is introduced by
analysing current RBFN online modelling methods. SW-RAN is discussed in detail in Section 3,
which includes the mechanism of sliding window and the operations of adding new hidden units,
adjusting network parameters, and pruning and combining hidden units. Section 4 demonstrates

 3

the effectiveness of SW-RAN by simulating three typical examples. Finally, a brief summary of
SW-RAN is provided and further research is discussed.

2. Introduction of RBFN
Considering a MISO RBFN with structure 1−− hm (Fig. 1), m is the number of network
inputs and h is the number of hidden units. Since it is straightforward to get results of MIMO
RBFNs based on MISO RBFNs, only will MISO RBFNs be discussed in this section. Assume that
the active function of the i-th hidden unit is ()xiφ , which can be Gaussian radial basis function or
polynomials in order to accelerate learning procedure [7]. If Gaussian radial basis function is
adopted, then

 () 2

2

i

i

r

cx

i ex
−

−

=φ (1)
If polynomials is used, then

 ()
⎪
⎩

⎪
⎨

⎧
<−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

=

other

qrcx
qr

cx
x ii

i

i

i

,0

,1 2
2

2φ (2)

In the above equation, [] mT
m Rxxxx ∈= ,...,, 21 are inputs of the RBFN. m

i Rc ∈ is the unit

centre of the i-th hidden unit, and ir is the spread constant (or called width) of the unit centre.

Set 67.2=q in equation (2), then the input-output model of the RBFN is:

 () () bxwxf
h

i
ii +=∑

=1
φ (3)

Where () Rxf ∈ is the output of the network; []hwwww ,...,, 21= is the weight vector

while iw is the weight between the i-th hidden unit and its related output; b is the output bias.
It has already been proved that the above RBFN model can approximate any continuous

function in compact sets with any accuracy [15, 16, 17]. This includes the NAMARX model
commonly used in non-linear dynamic system identification and control:

 ()kmkukumkykyfky uy),(),...,1(),(),...,1()(−−−−= (4)

Fig.1 Structure of RBFN

Considering the situation of RBFN online learning, suppose that there are h hidden units in the
current network, where 0≥h . Assume a new observation ()nn yx , is obtained. Generally, there

is a bias ne between the network output ()nxf and the teacher’s output ny , which

is ()nnn xfye −= . To maintain the bias ne at a reasonable level, parameters including structure
parameters and weights in RBFNs need to be adjusted. The adjustable parameters include: the
hidden unit number, the position of unit centre ic , the spread constant ir , the output weight w , and

 4

the output bias b .
Since both RAN and MRBF only use the latest single sample for on-line training, the trained
RBFN is easy to be trapped into local minimums and its performance is seriously affected by bad
samples [22]. Moreover, during the adjustment procedure, some unit centres will possibly overlap
completely with the existing unit centres and some other centres will possibly move out of the
normal working area. These will greatly waste system resources and influence the network’s
generalisation ability. So, a reasonable online modelling method is to use multiple latest samples
and adjust network parameters dynamically in the learning process. That is, when the current
network has a big bias on the latest samples, a new hidden unit is generated; otherwise, unit
centres, weights and bias are adjusted to decrease the bias; when two or more centres overlap
completely, they are combined; when some of the hidden units move out of the working area, they
are pruned. This is the basic idea of SW-RAN.

3. Proposed online modelling method
3.1 Sliding window

The sliding window is a first-in-first-out (FIFO) queue with a fixed length L . All elements in
the queue are samples obtained online. These samples are arranged according to the time when
they enter the window, where ()LL yx , represents the latest sample and ()11, yx is the earliest one.

A sliding window with a length L can be represented as
 []),(),...,,(),,(2211 LL yxyxyxWindow = (5)

When a new sample ()nn yx , is inputted, it becomes the newest sample in the window. If the

number of samples in the window exceeds L , the earliest one will slide out of window. All
samples in the window will be used for network training.

The following object function is used in network training:

 ∑
=

=
L

i
iieE

1

2β (6)

where ie is the training error of the i-th sample in the window and iβ is the weighting

coefficient of errors. Obeying the idea of “decaying factor”, the value of iβ is taken as follows:

if linear decaying is used,
)1(

2
+

=
LL

i
iβ ; if adopting exponential decaying,

then iL
Li

−

−
−

= µ
µ
µβ

1
1

, where µ is the decaying factor. No matter which method is adopted,

always have 1
1

=∑
=

L

i
iβ . In online modelling, it is often acknowledged that the newer an

observation is, the more information it contains. So, in the above decaying method, newer samples
have bigger weights while older ones have smaller weights. In the following parts of this paper,
linear decaying method will be used.

Sliding window uses not only the newest single sample, but also multiple latest samples. From the
distributions of decaying weights, it can be seen that the newest information is the most important.
The effect of decaying weights is very similar to the forgetting factor used for process system
identification [21]. It is well known that the forgetting factor may be used to identify the
time-varying systems, and it has good tracking performance. However, sliding window is different
from forgetting factor, because after the presentation of each new training example, other samples
remained in sliding window will be repeated for training, which means that each sample will be
used for training for L times. Thus the sliding window is a combination of batch learning and
sequential learning. It has been proved out that batch learning is more robust than sequential
learning [22]. So, comparing with the usage of a single sample, sliding window brings better

 5

robustness to the SW-RAN and makes its learning parameters easy to be tuned. The simulation
results in section 4 will validate this assumption.

3.2 Generation of new hidden units
When a new sample ()nn yx , is obtained and put into the sliding window, firstly, it needs to
decide whether a new hidden unit should be added. According to the idea of resource-allocating
networks, if the current network has a large error ne on the newest sample and the sample input is
far away from all existing unit centres in the network (that is, no hidden unit is activated by this
new sample), then it is regarded that the sample ()nn yx , can not be realised by the current
network, which means that it’s a “novel” sample complying the following rules:

 minδ>−= nearestnn cxd (7)

 min)(ε>−= nnn xfye (8)

Then, a new hidden unit should be added to eliminate the error. When the new unit is allocated, the
network’s output should be equal to the sample output ny . The unit centre of the new hidden unit
satisfies:

 nh xc =+1 (9)

The connection weight from the hidden unit to its output is set as the value of ne , which is the
error between the output of the current network and the expected output:

 nh ew =+1 (10)
The width of the hidden unit is taken as

 nh dr κ=+1 (11)

where κ is the overlap factor, ne and nd are defined in equation (7) and (8).
Equation (7) defines the distance criterion, which means the new sample input is far away from all
current unit centres. The error criterion is defined in equation (8), which means there is a great
error between the sample output and the expected output of the network. minε is defined as the

expected accuracy of network learning. If the error of the current network is greater than minε ,
equation (9), (10), (11) are used to add a new hidden unit and the error will be eliminated
immediately; The error which is less than minε will be gradually eliminated by the gradient

method which will be introduced in the next section. In RAN and MRBF, distance minδ is
decayed step by step, that is, it is decayed from a large initial value to a small final value. However,
it is found that the maximum and minimum value of minδ greatly influence the learning results.

In SW-RAN, a fixed value of minδ will be taken.

Initially, there is no hidden unit in the network. After the first sample ()00 , yx is inputted,

let 0yb = . In addition, if there is no hidden unit when a new sample ()nn yx , is obtained,

let minδ=nd .

3.3 Online adjustments of network parameters
If the current network performs well on the new sample, or the new sample input activates one or
more hidden units, which means the network satisfies minε≤ne or minδ≤nd for the new

sample ()nn yx , , the error can be eliminated by adjusting unit centres, the spread constants of
hidden units, output weights and bias. Normally, the Gradient method [7] or extended Kalman
filter [8, 9, 10] are used for such adjustments. In this paper, the gradient method is adopted to
modify unit centres and units’ width while weights and bias are obtained by solving linear
equations.

 6

The gradient functions of the current network function ()xf on unit centre ic and width ir
separately are:

 ()()ii
i

i
c cxx

r
wxf

i
−=∇ φ2

2)((12)

 () 2
3

2)(ii
i

i
r cxx

r
wxf

i
−=∇ φ (13)

Considering the impact of decaying factor and all samples in the sliding window, modifications of

ic and ir are separately defined as:

 ∑
=

∇=∆
L

j
jciii xfec

i
1

)(ηβ (14)

 ∑
=

∇=∆
L

j
jriii xfer

i
1

)(ηβ (15)

where ()ji xφ is the output of the i -th hidden unit on jx , iw is its output weight, η is the

learning rate.
In order to accelerate the learning procedure, a momentum item can be added in the gradient

method, thus:
)1()()1()(−∆+∆+−= ncncncnc iiii α (16)

)1()()1()(−∆+∆+−= nrnrnrnr iiii α (17)

where)1(−∆ nci and)1(−∆ nri are the previous adjustments of ic and ir separately, α
is the momentum factor, usually within the range 0.1~0.8.
To avoid that ir becomes too big or too small, in practice, a delimitation operation can be made

on ir and makes it variable only within the range of []maxmin ,rr .
If unit centres and width change, weights from hidden units to outputs and bias should be modified
accordingly. In fact, if unit centres and width are fixed, it is linear from hidden unit output to
network output. So, weights and bias can be calculated by least mean square error algorithm. For
the j-th sample in the sliding window, assume the input is jx , Lj ,21 ，，= , and the output of

the i -th hidden unit is)(jiij xa φ= , then the hidden unit output matrix can be defined as

][ijaA = , LhRA ×∈ , where h is the hidden unit number, L is the length of the sliding

window. Because of the local property of RBFN, only parts of hidden units are possibly activated
by the samples in the sliding window. Obviously, only the related output weights of those activated
hidden units should be readjusted, while the other weights should remain unchanged. Whether the
i -th hidden unit is activated or not can be judged by the following rule:

 min
1

1 aa
L

L

j
ij >∑

=

 (18)

Where mina is a small threshold less than 0.01. If the above rule is satisfied, the i -th hidden unit
is activated.

Suppose the teacher outputs are []TLyyyy ,...,, 21= , the output matrix of the M activated hidden

units is A , extend matrix of A is ⎥
⎦

⎤
⎢
⎣

⎡
=

L

A
A

1
ˆ , where L1 is a L -dimension line vector of which

all elements equal to 1. Let

 yAW += ˆ (19)

where +Â is the pseudo-inverse of Â :

 7

 AAAA T ˆ)ˆˆ(ˆ 1−+ = (20)

Obviously,)1(1 +×∈ MRW . Thus, the output weights of the M activated hidden units are modified
as:

)](),...,2(),1([)(MWWWnw = (21)

which is the first M elements of W . The bias is updated as:
)1()(+= MWnb (22)

Here, only the output weights of the activated hidden units are adjusted. This will not only reduce
calculation greatly, but also avoid the overflow problem while solving the inverse matrix. This
advantage of SW-RAN is especially important in real applications.
The training process should be stopped if the training reaches a fixed number of epochs, or the
error of samples in sliding window satisfies the following inequation:

 minε<E (23)
To accelerate convergence, the learning procedure can also be stopped when the error does not
decrease in two consecutive gradient modifications. This means:

 minε∆<∆ E (24)

Generally, minε∆ is less than 0.0001.

3.4 Online combination and deletion of hidden units
When the unit centres and the width values of hidden units are adjusted by the gradient method,
two situations could occur: 1) two or more unit centres are near to each other and their width
values are nearly the same, then these hidden units should be combined; 2) some of the unit centres
move away from the working area and become useless, then these hidden units should be removed.
Otherwise, both situations will affect the network performance.
Consider the combination of hidden units first. Suppose that i , j are two hidden units, their unit
centres are close to each other because of continuous adjustments. In addition, they are the nearest
hidden units of each other. Then,

 minccc ji ∆<− (25)

 minrrr ji ∆<− (26)

where both minc∆ and minr∆ are the combination thresholds, normally taking the value of 0.01.
Then, for any input x , outputs of the hidden units i , j satisfy

 () ()xx ji φφ ≈ (27)

Thus, the hidden unit j can be combined with the hidden unit i . Obviously, the output weight of
the combined unit i is

 jii www += (28)

The unit centre of the combined unit i is

)(
2
1

jii ccc += (29)

Then, consider the deletion issue of the useless hidden units. When some of the hidden units move
away from the working area due to the adjustments, samples in the working area will no longer
activate these hidden units. So, if a hidden unit is not activated in consecutive input samples, it
should be removed. That is, when the following inequation is satisfied

 maxCcount > (30)
Where count is the accumulated times of the hidden unit not being activated, then the related
hidden unit should be pruned. Since the existence of the useless units will not greatly affect the
realisation of SW-RAN, maxC can take a relatively large value to prevent useful units being
removed.

 8

3.5 Algorithm realisation
Based on the above discussions, the online modelling algorithm of SW-RAN can be realised as
follows:

 Initially, there is no hidden unit in the network. Let the bias be the first sample output:

0yb = ;

 for each online input sample ()nn yx , :
 put the sample into the sliding window and move out the oldest sample if it has;
 count the number of not being activated for each hidden unit, remove those units not

being activated for long time;

 calculate: () 2

2

i

in

r

cx

i ex
−

−

=φ , () () bxwxf
h

i
niin +=∑

=1
φ , ()nnn xfye −= ,

nearestnn cxd −= ;

 if minδ>nd and minε>ne , allocate a new hidden unit as follows:

 nh xc =+1

)(1 nnh xfyw −=+

 nh dr κ=+1
 otherwise, adjust network unit centres, width, weights and bias as follows, until the

maximum training epochs is reached, or the training error of samples in the sliding
window is less than a given value:

 ()()ii
i

i
c cxx

r
wxf

i
−=∇ φ2

2)(

 () 2
3

2)(ii
i

i
r cxx

r
wxf

i
−=∇ φ

 ∑
=

∇=∆
L

j
jciii xfec

i
1

)(ηβ

 ∑
=

∇=∆
L

j
jriii xfer

i
1

)(ηβ

)1()()1()(−∆+∆+−= ncncncnc iiii α

)1()()1()(−∆+∆+−= nrnrnrnr iiii α

 AAAA T ˆ)ˆˆ(ˆ 1−+ =

 yAW += ˆ
)](),...,2(),1([)(MWWWnw =
)1()(+= MWnb

Finally, check if there are redundant hidden units; combine them if there are some.

4. Simulation study
4.1 Static function approximation problem
This problem is studied to test whether SW-RAN is able to design a minimal RBFN that exactly
matches the target function [9, 18]. The non-linear target function is a two-input-single-output
system, which consists of six exponential functions as follows:

 9

⎥
⎦

⎤
⎢
⎣

⎡ −+−
−+⎥

⎦

⎤
⎢
⎣

⎡ −+−
−+

⎥
⎦

⎤
⎢
⎣

⎡ −+−
−+⎥

⎦

⎤
⎢
⎣

⎡ −+−
−+

⎥
⎦

⎤
⎢
⎣

⎡ −+−
−+⎥

⎦

⎤
⎢
⎣

⎡ −+−
−=

01.0
)8.0()7.0(exp

01.0
)8.0()3.0(exp

02.0
)5.0()9.0(exp

02.0
)5.0()1.0(exp

01.0
)2.0()7.0(exp

01.0
)2.0()3.0(exp)(

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

xxxx

xxxx

xxxxky

 (31)

Obviously, the target function can be realised by a RBFN with six hidden units. In order to evolve
a minimal RBFN using SW-RAN method, 121 training patterns ()yxx),,(21 are provided,

where ()21, xx is the input, y is the output, { }1,...,1.0,0∈ix , { }2,1∈i .

Fig. 2 Evolution of the hidden units

Table 1 True and estimated centres, width and weight

True centre (0.3,0.2) (0.7,0.2) (0.1,0.5) (0.9,0.5) (0.3,0.8) (0.7,0.8)
Estimated centre (0.301,0.200) (0.699,0.198) (0.097,0.500) (0.900,0.500) (0.300,0.800) (0.699,0.802)

True width 0.1 0.1 0.144 0.144 0.1 0.1
Estimated width 0.098 0.099 0.139 0.149 0.099 0.099

True weight 1.0 1.0 1.0 1.0 1.0 1.0
Estimated weight 1.038 1.008 1.013 0.966 1.040 1.004

The learning parameters of SW-RAN are set as follows (some of these parameters will not be used
in simulation): minε =0.02, minδ =0.3, combination threshold minc∆ =0.01, minr∆ =0.01,

activating threshold mina =0.01, maxC =400, overlap coefficient κ =1.0, length of sliding

window L =60, learning rate η =0.5, momentum rate α =0.5, maximum training epoch

MaxEpoch=100, minε∆ =0.0001, and the maximum and minimum values of width are minr =0.05,

maxr =0.25 separately.
Fig. 2 displays the evolution of the number of hidden units in SW-RAN during the learning
procedure. Table 1 presents the comparisons of true and estimated centres, width and weights.
From Table 1, it can be seen that the estimated values are very close to the true values. This
simulation proves that SW-RAN can realise a given minimal RBFN quite well and the results are
much better than the results presented in reference [9] and [18]. When the learning process finishes,
the estimated bias is 001.0−=b , which is very close to the true value as well.

4.2 Non-linear dynamic system identification
This is a non-linear SISO time-varying discrete system [12,19]:

 10

)1(
10
2)1(

10
2

))1(4)1(43)((
)1(8)1(16sin

40
)(29)(22

−+−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−+

−+−
=

kyku

kykuk
kykukky

β
β

 (32)

where)(ku is the system input signal with uniform distributions within []1,1− ,)(kβ is a
time-varying parameter, its evolution is as follows:

⎪
⎩

⎪
⎨

⎧

≤≤
≤≤

≤≤
=

50002501,8.0
25001501,9.0

15000,0.1
)(

k
k

k
kβ (33)

Let 0)0(=y , generate 5000 training patterns according to the above equation.

Fig. 3 Evolution of hidden units

Fig. 4 Evolution of error (dI)

Set the learning parameters of SW-RAN as follows: minε =0.01, minδ =1.5, minc∆ =0.01,

minr∆ =0.01, mina =0.01, maxC =200, κ =0.9, L =100, η =0.5, α =0.5, MaxEpoch=200,

minε∆ =0.00001, minr =0.5, maxr =2.5.

For a certain training set, Fig 3 demonstrates the changes of hidden neurons together with)(kβ .

If 0.1)(=kβ , SW-RAN fits well with the target function with 8 hidden units when 600=k ;

when 1600=k , the number of units increases to 9 while 9.0)(=kβ ; when 3100=k or so,

the number of units becomes 10 while 8.0)(=kβ . After that, the number of hidden units
remains unchanged.
For comparison, the following error criterion is used [12, 19]:

 ∑
−

=

−−−=
1

0
)(ˆ)(1)(

L

p
d piypiy

L
iI (34)

Fig 4 shows the evolution history of error index dI . It can be seen from Fig 4 that dI increases

 11

obviously when)(kβ changes at 1500=k and 2500=k , then they are depressed by
SW-RAN very soon.
In Table 2, the identification results of SW-RAN, MRBF and ONSAHL are compared, where davI

is the average value of dI calculated from 1500=k to 5000=k . The results of MRBF and
ONSAHL are taken from the reference [12]. From Fig 3, Fig 4 and Table 2, it can be seen that
SW-RAN performs better than MRBF and ONSAHL on learning speed, training error and the final
hidden units.
Worthy of noting, because of the randomness of training sets, the training results also have some
kind of randomness. During the 10 tests being made, the number of hidden units fluctuates within
10～13 and davI within 0291～0.0407. So, the results are still quite stable.

Table 2 Comparison of identification results of ONSAHL, MRBF and SW-RAN

Performance Hidden units davI

ONSAHL 25 0.0586
MRBF 11 0.0326
SW-RAN 10 0.0311

4.3 Prediction of chaotic time series
In this section, the SW-RAN is applied to model and predict future values of a chaotic time series
– the Mackey-Glass (MG) data set [20], which has been used as a benchmark in neural networks,
fuzzy systems, and hybrid systems. The time series is created by using the MG time-delay
differential equation defined as below:

() ()

() ()tx
tx

tx
dt

tdx 1.0
1

2.0
10 −

−+
−

=
τ
τ

 (34)

To obtain the values of this time series at integer points, the fourth-order Runge-Kutta method is
used to get the numerical solution to the above MG equation. Here, assume the time step is
0.1, 0)(=tx , 17=τ and 2.1)0(=x for 0<t .

The task is to predict the value ()50+tx from the input vector

() () () ()[]txtxtxtx 61218 −−− and test the robustness of SW-RAN on the changes of the

learning parameters. The following experiment is conducted: 1500 data points, from t＝201 to

1700, are used as learning data, and 500 data points, from t＝3001 to 3500, are used as testing
data.
The parameters used in this experiment are set as follows: minε =0.01, minδ =0.15, minc∆ =0.01,

minr∆ =0.01, mina =0.0001, maxC =400, κ =0.9, L =300, η =0.5, α =0.5, MaxEpoch=200,

minε∆ =0.0001, minr =0.01, and maxr =2.5.
Fig 5 presents the changing number of the hidden neurons during the learning procedure. Fig 6
records the changing history of the training error and testing error. The training error is calculated
according to the samples in the sliding window while the testing error is normalised rooted mean
square error (RSME). After being trained on 1500 patterns, the final number of the hidden units is
45 and the normalised RSME on 500 test samples is 0.0427. From Fig 5 and Fig 6, it can be seen
that the test only uses no more than 1500 patterns to fit well on MG time series, in addition, with
more compact network structure and less testing error. It’s obvious that SW-RAN performs better
than RAN [7, 8].
As mentioned before, SW-RAN shows good robustness against changing learning parameters. To
test the robustness of SW-RAN, the values of main parameters are changed in simulation. The
testing results are presented in Table 3. The parameters being changed are minε , minδ , sliding

window length L , and maximum training epochs MaxEpoch. The number of hidden units and

 12

normalised RSME for different parameters are also listed in Table 3. The results show that the
fluctuations of network structures and testing errors are much more smooth than RAN [7, 8],
which proves that SW-RAN has good robustness and makes the parameters easier to tune.

Fig.5 Evolution of hidden units

Fig.6 Evolution of training error and normalized RSME

Table 3 Result comparison with different learning parameters

minε minδ L MaxEpoch Hidden Unit
Normalized

RSME

0.010 0.15 300 200 45 0.0427

0.005 0.15 300 200 62 0.0668

0.015 0.15 300 200 46 0.0622

0.010 0.18 300 200 35 0.0540

0.010 0.12 300 200 62 0.0393

0.010 0.15 250 200 46 0.0443

0.010 0.15 350 200 45 0.0430

0.010 0.15 300 100 45 0.0427

5. Discussions and conclusions
In this paper, some problems of current online modelling methods are addressed firstly. Then, an
online RBFN modelling method using sliding window called SW-RAN is proposed. The proposed
method incorporates sliding window with resource-allocating networks to gain some additional
benefits for online modelling. The issues of network structure and parameters’ online adjustment,
including operations of adding, combining and pruning hidden units, modifications of unit centres,
weights and bias, are discussed to online design a compact network that satisfies the accuracy
requirement and has a good generalisation ability. Three benchmark examples demonstrate that
SW-RAN has the abilities of building minimal models, adapting to time-varying plants, and being
robust to the changes of the learning parameters.
For an online modelling method, it’s also important to consider the issue of real time realisation.
The simulation results in this paper show that SW-RAN can satisfy the real time requirements of
most practical applications. In the testing examples of 4.2 and 4.3, a simple test on learning time of

 13

SW-RAN is conducted. The simulation is implemented by VC++ 6.0, the operation system of the
PC is Windows XP, and the CPU of the PC is Pentium 2.0GHz. The results present that the average
learning time of SW-RAN is less than 0.2 second for every new training pattern, even with worse
learning parameters. This is fast enough to meet the real time requirements of most applications.
Of course, digital signal processing (DSP) chips may be used to meet faster speed requirement.
However, SW-RAN is supposed to know the order of the model in advance and its only structure
parameter need to be adjusted is the number of hidden units. In reality, it is also common that the
model order is unknown and needs to be determined online. For example, in the identification of
NARMARX model in equation (4), the value of um and ym sometimes also need online

determination. How to determine the model order together with the number of hidden units is an
issue need to be further investigated.

References

[1] T. Piggio and F. Girosi, “Networks for Approximation and Learning”, Proc. IEEE. 1990,
78(9), 1481-1497.

[2] D. Broomhead and D. Lowe. “Multi-variable functional interpolation and adaptive networks”,
Complex Systems. 1988, 2, 269-303.

[3] S. Chen, C. Cowan and P. Grant. “Orthogonal Least Squares Learning Algorithms for Radial
Basis Function� Networks”, IEEE Trans. Neural Networks, 1991, 2(2), 302-309.

[4] M. Orr. “Regularization in the selection of radial basis function centres”, Neural Computation,
1995, 7, 606-623.

[5] K. Mao and S. Billings. “Algorithms for minimal model structure detection in non-linear
dynamic system identification”, Int. J. Control, 1997, 68(2), 311-330.

[6] J. Moody And C. Darken. “Fast Learning in Networks of Locally-Tuned Processing Units”,
Neural Computation, 1989, 1, 281-294.

[7] J. Platt. “A resource-allocating network for function inerpolation”, Neural Computation, 1991,
3, 213-225.

[8] V. Kadirkamanathan. “A function estimation approach to sequential learning with neural
networks”, Neural Computation, 1993, 5, 954-975.

[9] L. Yingwei, N.Sundararajan and P.Saratchandran. “Identification of time-varying non-linear
systems using minimal radial basis function neural networks”, IEE Proc.-Control Theory Appl.
1997, 144(2), 202-208.

[10] L. Yingwei, N.Sundararajan and P.Saratchandran. “A sequential learning scheme for function
approximation and using minimal radial basis neural networks”, Neural Computation, 1997,
9(2), 1-18.

[11] L. Yingwei, N.Sundararajan and P.Saratchandran. “Performance evaluation of a sequential
minimal radial basis function (RBF) neural networks learning algorithm”, IEEE Trans. Neural
Networks, 1998, 9(2), 308-318.

[12] Y. Li, N.Sundararajan and P.Saratchandran. “Analysis of minimal radial basis function neural
networks algorithm for real-time identification of non-linear dynamic systems”, IEE
Proc.-Control Theory Appl. 2000, 147(4), 476-484.

[13] P. Niyogo and F. Girosi. “On the Relationship between Generalization Error, Hypothesis
Complexity, and Sample Complexity for Radial Basis Function”, Neural Computation, 1996, 8,
819-842.

[14] S. Geman, E. Bienenstock and R. Doursat. “Neural Networks and Bias/Variance Dilemma”.
Neural Computation, 1992, 4, 1-58.

[15] E. Hartman, J. D. Keeler and J. Kowalski. “Layered neural networks with Gaussian hidden
units as universal approximators”, Neural Computation. 1990, 2, 210-215.

[16] J. Park and I. W. Sandberg. “Universal approximation using radial-basis-function”, Neural
Computation. 1991, 3, 246-257.

[17] F. Girosi and T. Poggio. “Networks and the best approximation property”, Boil. Cybernet. 1990,
63, 169-176.

[18] C. Chen, W. Chen and F. Cheng. “Hybrid learning algorithm for Gaussian potential network”,
IEE Proc. D, 1993, 140, 442-448.

[19] T. Junge and H. Unbehauen, “On-line identification of non-linear time-variant systems using

 14

structurally adaptive radial basis function networks”, Proc. Amer. Control Conf., Albuquerque,
New Mexico, 1997, 1037-1041.

[20] M. Mackey and L. Glass, “Oscillation and Chaos in Physiological Control systems”, Science,
1977, 197, 287- 289

[21] L. Ljung. “System identification: Theory for the User”, Prentice-Hall, 1999.
[22] T. Heskes and W. Wiegerinck, “A theoretical comparison of batch-mode, on-line, cyclic, and

almost-cyclic learning”, IEEE Trans. Neural Networks, 1996, 7(4), 919-925.

