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Abstract: In this paper, a sliding window based resource-allocating network (SW-RAN) for non-linear 
dynamic systems is proposed. SW-RAN is an online constructive-pruning hybrid approach for RBFN design. 
It adopts the following strategy: adding a new hidden unit if current network performs unsatisfactorily on the 
latest observation; otherwise, combining or deleting hidden units while adjusting unit centres and spread 
constants. SW-RAN not only makes the neural network online adapt to the changing dynamics of the plant 
being modelled, but also maintains a compact network size and guarantees its satisfying generalisation ability. 
More importantly, by incorporating the idea of sliding window, in which multiple latest samples are used for 
training, SW-RAN performs good robustness against the changes of learning parameters and is easy to 
converge. Three benchmark examples demonstrate the effectiveness of the method.  
keywords: radial basis function network, sliding window, resource-allocating network, generalisation ability, 
non-linear system, online modelling 

1. Introduction 
In addition to its simple structure and strong approximation ability, feed-forward neural network 
does not require complex theoretical analysis. Because of these advantages, it is becoming more 
and more widely used in the areas such as non-linear system modelling. As one of its important 
applications, feed-forward network is often used for online modelling in practical engineering 
projects and adaptive systems. 

 
Among the large number of feed-forward neural networks, Radial Basis Function Network (RBFN) 
[1] is one of the most often applied networks in non-linear system modelling. Comparing with 
other neural networks such as Multi-Layer Perceptron (MLP), RBFN has a very important 
characteristic named local property. The meaning of local property is to activate one or more 
hidden units once the neural network produces effective outputs. The local property of RBFN 
makes it most suitable for online learning. Because when new observations are continuously 
inputted online, the network performance will not be over affected by either adjusting weights or 
adding new hidden units. This will help to realise the so-called incremental learning. 

 
There are a number of design methods available for RBFN. Generally, these design methods can 
be classified into two categories: i) set unit centres of hidden units as random values [2] or get 
them from sample inputs, such as Orthogonal Least Square (OLS) algorithm [3], Regularized 
Orthogonal Least Square (ROLS) algorithm [4] and Genetic Algorithm [5]; ii) adjust the positions 
of unit centres dynamically during the learning procedure, such as dynamic clustering based 
design method [6], Resource-allocating Network)(RAN) [7, 8], and minimal Radial Basis Function 
Networks (MRBF) [9, 10, 11, 12]. The common design principle of these methods is to seek a 
minimal neural network satisfying the accuracy requirement while maintaining its generalisation 
ability [13, 14].  

 
Unfortunately, all the above design methods except RAN and MRBF adopt off-line learning 
algorithm. RAN recursively checks all sample input-output pairs during its learning procedure. 
When a new sample meets the “novelty” requirement, a new unit is allocated. Two criteria are 
defined for the “novelty”:  1) distance criterion: the distance between the current sample input 
and its nearest unit centre exceeds a definite value ( )tδ ; 2) error criterion: the error between the 
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network output and the sample output exceeds a definite value mine . If these two criteria are both 
satisfied, a new resource will be allocated, which means a new hidden unit will be added.  The 
unit centre of the new hidden unit is assigned by the input of the current sample. The output weight 
is set as the error between the current neural network output and the current sample output. The 
spread constant is assigned by the distance between the current sample input and its nearest unit 
centre. If the error between the output of the current neural network and the output of the new 
sample is comparatively small or the distance between the sample input and the existing unit 
centres is not big enough, a new hidden unit will not be allocated. Under such situations, gradient 
method or extended Kalman filter will be used to adjust unit centres and weights to further 
decrease the errors. MRBF improves the RAN method described in [8]. In addition to satisfying 
distance criterion and error criterion, no new hidden unit will be added until the errors between the 
output of the current network and previous consecutive samples are all too big. Moreover, a hidden 
unit will be deleted if it is not activated in multiple consecutive samples.  
    
Although both RAN and MRBF can realise online learning, they have the following obvious 
disadvantages:  

1) The algorithm’ robustness to the changes of learning parameters is not satisfying. Take 
the value of resolution ( )tδ  as an example, it is found that when maxδ and minδ , 

especially minδ , have minor changes, the hidden unit number will change dramatically 
and even cannot converge. The unsatisfying robustness to the changes of learning 
parameters is a big barrier of putting this algorithm into practice since it makes the 
learning parameters difficult to be decided.  

 
2) The network generalisation ability cannot be guaranteed. In RAN, a hidden unit cannot 

be deleted once it is added. Under the situation of online learning, the network’s hidden 
unit number will increase while the learning period continues, although some hidden 
units are possibly useless or redundant. In order to satisfy accuracy requirement, the 
increasing network scale will not only waste system resources, but also deteriorate the 
generalisation ability of the neural network [13, 14]. MRBF supports the deletion of 
hidden neurons, but the mechanism of deletion is too simple. Therefore, there are 
possibilities that some of the redundant hidden neurons will not be removed while some 
valid hidden neurons are deleted by mistakes. 

 
In order to keep the current advantages of RAN and get rid of its addressed disadvantages, a 
sliding window based resource-allocating network (SW-RAN) is proposed and its detailed 
mechanism will be discussed in the following sections. According to the latest error information, 
SW-RAN can optimise system resources to maintain a compact network structure. This will certify 
the generalisation ability of the RBFN. SW-RAN optimises resources by online adding new hidden 
neurons (allocating new resources), online combining redundant hidden neurons (recombining 
resources), and online removing useless hidden neurons (releasing resources). By adopting the 
idea of sliding window, SW-RAN appears to have good robustness to the changes of learning 
parameters and is easier to converge. 

 
In this paper, three benchmark examples are used to demonstrate the efficiency of SW-RAN. The 
example of static function approximation shows that SW-RAN can realise desired target function 
with minimal network structure. The example of time-varying non-linear function identification 
demonstrates that SW-RAN can online adapt to the time-varying dynamic plant. The 
Mackey-Glass chaotic time series prediction exemplifies SW-RAN’s generalisation ability and its 
robustness to the variations of learning parameters. 
 
This paper is organised as follows. A brief discussion of current RBFN design methods and related 
concepts are presented in Section 1. In Section 2, the basic idea of SW-RAN is introduced by 
analysing current RBFN online modelling methods. SW-RAN is discussed in detail in Section 3, 
which includes the mechanism of sliding window and the operations of adding new hidden units, 
adjusting network parameters, and pruning and combining hidden units. Section 4 demonstrates 
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the effectiveness of SW-RAN by simulating three typical examples. Finally, a brief summary of 
SW-RAN is provided and further research is discussed. 

2. Introduction of RBFN 
Considering a MISO RBFN with structure 1−− hm  (Fig. 1), m  is the number of network 
inputs and h  is the number of hidden units. Since it is straightforward to get results of MIMO 
RBFNs based on MISO RBFNs, only will MISO RBFNs be discussed in this section. Assume that 
the active function of the i-th hidden unit is ( )xiφ , which can be Gaussian radial basis function or 
polynomials in order to accelerate learning procedure [7]. If Gaussian radial basis function is 
adopted, then 
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In the above equation, [ ] mT
m Rxxxx ∈= ,...,, 21  are inputs of the RBFN. m

i Rc ∈  is the unit 

centre of the i-th hidden unit, and ir  is the spread constant (or called width) of the unit centre. 

Set 67.2=q  in equation (2), then the input-output model of the RBFN is: 

  ( ) ( ) bxwxf
h

i
ii +=∑

=1
φ            (3) 

Where ( ) Rxf ∈  is the output of the network; [ ]hwwww ,...,, 21=  is the weight vector 

while iw  is the weight between the i-th hidden unit and its related output; b  is the output bias. 
It has already been proved that the above RBFN model can approximate any continuous 

function in compact sets with any accuracy [15, 16, 17]. This includes the NAMARX model 
commonly used in non-linear dynamic system identification and control: 

  ( )kmkukumkykyfky uy ),(),...,1(),(),...,1()( −−−−=    (4) 

 
Fig.1  Structure of RBFN 

 
Considering the situation of RBFN online learning, suppose that there are h  hidden units in the 
current network, where 0≥h . Assume a new observation ( )nn yx ,  is obtained. Generally, there 

is a bias ne  between the network output ( )nxf  and the teacher’s output ny , which 

is ( )nnn xfye −= . To maintain the bias ne  at a reasonable level, parameters including structure 
parameters and weights in RBFNs need to be adjusted. The adjustable parameters include: the 
hidden unit number, the position of unit centre ic , the spread constant ir , the output weight w , and 
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the output bias b . 
Since both RAN and MRBF only use the latest single sample for on-line training, the trained 
RBFN is easy to be trapped into local minimums and its performance is seriously affected by bad 
samples [22]. Moreover, during the adjustment procedure, some unit centres will possibly overlap 
completely with the existing unit centres and some other centres will possibly move out of the 
normal working area. These will greatly waste system resources and influence the network’s 
generalisation ability. So, a reasonable online modelling method is to use multiple latest samples 
and adjust network parameters dynamically in the learning process. That is, when the current 
network has a big bias on the latest samples, a new hidden unit is generated; otherwise, unit 
centres, weights and bias are adjusted to decrease the bias; when two or more centres overlap 
completely, they are combined; when some of the hidden units move out of the working area, they 
are pruned. This is the basic idea of SW-RAN. 

3. Proposed online modelling method 
3.1 Sliding window 

The sliding window is a first-in-first-out (FIFO) queue with a fixed length L . All elements in 
the queue are samples obtained online. These samples are arranged according to the time when 
they enter the window, where ( )LL yx ,  represents the latest sample and ( )11, yx  is the earliest one. 

A sliding window with a length L  can be represented as 
  [ ]),(),...,,(),,( 2211 LL yxyxyxWindow =        (5) 

When a new sample ( )nn yx ,  is inputted, it becomes the newest sample in the window. If the 

number of samples in the window exceeds L , the earliest one will slide out of window. All 
samples in the window will be used for network training. 

The following object function is used in network training: 

  ∑
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where ie  is the training error of the i-th sample in the window and iβ  is the weighting 

coefficient of errors. Obeying the idea of “decaying factor”, the value of iβ  is taken as follows: 
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, where µ  is the decaying factor. No matter which method is adopted, 
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1

=∑
=

L

i
iβ . In online modelling, it is often acknowledged that the newer an 

observation is, the more information it contains. So, in the above decaying method, newer samples 
have bigger weights while older ones have smaller weights. In the following parts of this paper, 
linear decaying method will be used. 
 
Sliding window uses not only the newest single sample, but also multiple latest samples. From the 
distributions of decaying weights, it can be seen that the newest information is the most important. 
The effect of decaying weights is very similar to the forgetting factor used for process system 
identification [21]. It is well known that the forgetting factor may be used to identify the 
time-varying systems, and it has good tracking performance. However, sliding window is different 
from forgetting factor, because after the presentation of each new training example, other samples 
remained in sliding window will be repeated for training, which means that each sample will be 
used for training for L  times. Thus the sliding window is a combination of batch learning and 
sequential learning. It has been proved out that batch learning is more robust than sequential 
learning [22]. So, comparing with the usage of a single sample, sliding window brings better 
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robustness to the SW-RAN and makes its learning parameters easy to be tuned. The simulation 
results in section 4 will validate this assumption.  

3.2 Generation of new hidden units 
When a new sample ( )nn yx ,  is obtained and put into the sliding window, firstly, it needs to 
decide whether a new hidden unit should be added. According to the idea of resource-allocating 
networks, if the current network has a large error ne on the newest sample and the sample input is 
far away from all existing unit centres in the network (that is, no hidden unit is activated by this 
new sample), then it is regarded that the sample ( )nn yx ,  can not be realised by the current 
network, which means that it’s a “novel” sample complying the following rules: 

   minδ>−= nearestnn cxd          (7) 

   min)( ε>−= nnn xfye          (8) 

Then, a new hidden unit should be added to eliminate the error. When the new unit is allocated, the 
network’s output should be equal to the sample output ny . The unit centre of the new hidden unit 
satisfies: 

   nh xc =+1             (9) 

The connection weight from the hidden unit to its output is set as the value of ne , which is the 
error between the output of the current network and the expected output: 

   nh ew =+1             (10) 
The width of the hidden unit is taken as  

   nh dr κ=+1             (11) 

where κ  is the overlap factor, ne  and nd  are defined in equation (7) and (8). 
Equation (7) defines the distance criterion, which means the new sample input is far away from all 
current unit centres. The error criterion is defined in equation (8), which means there is a great 
error between the sample output and the expected output of the network. minε is defined as the 

expected accuracy of network learning. If the error of the current network is greater than minε ,  
equation (9), (10), (11) are used to add a new hidden unit and the error will be eliminated 
immediately; The error which is less than minε  will be gradually eliminated by the gradient 

method which will be introduced in the next section. In RAN and MRBF, distance minδ  is 
decayed step by step, that is, it is decayed from a large initial value to a small final value. However, 
it is found that the maximum and minimum value of minδ  greatly influence the learning results. 

In SW-RAN, a fixed value of minδ  will be taken. 

Initially, there is no hidden unit in the network. After the first sample ( )00 , yx  is inputted, 

let 0yb = . In addition, if there is no hidden unit when a new sample ( )nn yx ,  is obtained, 

let minδ=nd . 

3.3 Online adjustments of network parameters 
If the current network performs well on the new sample, or the new sample input activates one or 
more hidden units, which means the network satisfies minε≤ne  or minδ≤nd  for the new 

sample ( )nn yx , , the error can be eliminated by adjusting unit centres, the spread constants of 
hidden units, output weights and bias. Normally, the Gradient method [7] or extended Kalman 
filter [8, 9, 10] are used for such adjustments. In this paper, the gradient method is adopted to 
modify unit centres and units’ width while weights and bias are obtained by solving linear 
equations. 
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The gradient functions of the current network function ( )xf  on unit centre ic  and width ir  
separately are: 

  ( )( )ii
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Considering the impact of decaying factor and all samples in the sliding window, modifications of 

ic and ir  are separately defined as:  
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where ( )ji xφ  is the output of the i -th hidden unit on jx , iw  is its output weight, η  is the 

learning rate. 
In order to accelerate the learning procedure, a momentum item can be added in the gradient 

method, thus: 
  )1()()1()( −∆+∆+−= ncncncnc iiii α        (16) 

  )1()()1()( −∆+∆+−= nrnrnrnr iiii α        (17) 

where )1( −∆ nci  and )1( −∆ nri  are the previous adjustments of ic  and ir  separately, α  
is the momentum factor, usually within the range 0.1~0.8. 
To avoid that ir  becomes too big or too small, in practice, a delimitation operation can be made 

on ir  and makes it variable only within the range of [ ]maxmin ,rr . 
If unit centres and width change, weights from hidden units to outputs and bias should be modified 
accordingly. In fact, if unit centres and width are fixed, it is linear from hidden unit output to 
network output. So, weights and bias can be calculated by least mean square error algorithm. For 
the j-th sample in the sliding window, assume the input is jx , Lj ,21 ，，= , and the output of 

the i -th hidden unit is )( jiij xa φ= , then the hidden unit output matrix can be defined as 

][ ijaA = , LhRA ×∈ , where h  is the hidden unit number, L  is the length of the sliding 

window. Because of the local property of RBFN, only parts of hidden units are possibly activated 
by the samples in the sliding window. Obviously, only the related output weights of those activated 
hidden units should be readjusted, while the other weights should remain unchanged. Whether the 
i -th hidden unit is activated or not can be judged by the following rule:  

  min
1

1 aa
L

L

j
ij >∑

=

            (18) 

Where mina  is a small threshold less than 0.01. If the above rule is satisfied, the i -th hidden unit 
is activated. 

Suppose the teacher outputs are [ ]TLyyyy ,...,, 21= , the output matrix of the M activated hidden 

units is A , extend matrix of A  is ⎥
⎦

⎤
⎢
⎣

⎡
=

L

A
A

1
ˆ , where L1  is a L -dimension line vector of which 

all elements equal to 1. Let 

  yAW += ˆ              (19) 

where +Â  is the pseudo-inverse of Â : 
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  AAAA T ˆ)ˆˆ(ˆ 1−+ =             (20) 

Obviously, )1(1 +×∈ MRW . Thus, the output weights of the M activated hidden units are modified 
as: 

  )](),...,2(),1([)( MWWWnw =          (21) 

which is the first M  elements of W . The bias is updated as: 
  )1()( += MWnb             (22) 

Here, only the output weights of the activated hidden units are adjusted. This will not only reduce 
calculation greatly, but also avoid the overflow problem while solving the inverse matrix. This 
advantage of SW-RAN is especially important in real applications. 
The training process should be stopped if the training reaches a fixed number of epochs, or the 
error of samples in sliding window satisfies the following inequation: 

  minε<E              (23) 
To accelerate convergence, the learning procedure can also be stopped when the error does not 
decrease in two consecutive gradient modifications. This means:  

  minε∆<∆ E             (24) 

Generally, minε∆  is less than 0.0001. 

3.4 Online combination and deletion of hidden units 
When the unit centres and the width values of hidden units are adjusted by the gradient method, 
two situations could occur: 1) two or more unit centres are near to each other and their width 
values are nearly the same, then these hidden units should be combined; 2) some of the unit centres 
move away from the working area and become useless, then these hidden units should be removed. 
Otherwise, both situations will affect the network performance.  
Consider the combination of hidden units first. Suppose that i , j  are two hidden units, their unit 
centres are close to each other because of continuous adjustments. In addition, they are the nearest 
hidden units of each other. Then,  

   minccc ji ∆<−            (25) 

   minrrr ji ∆<−            (26) 

where both minc∆  and minr∆  are the combination thresholds, normally taking the value of 0.01. 
Then, for any input x , outputs of the hidden units i , j  satisfy 

   ( ) ( )xx ji φφ ≈             (27) 

Thus, the hidden unit j  can be combined with the hidden unit i . Obviously, the output weight of 
the combined unit i  is 

   jii www +=             (28) 

The unit centre of the combined unit i  is 

   )(
2
1

jii ccc +=            (29) 

Then, consider the deletion issue of the useless hidden units. When some of the hidden units move 
away from the working area due to the adjustments, samples in the working area will no longer 
activate these hidden units. So, if a hidden unit is not activated in consecutive input samples, it 
should be removed. That is, when the following inequation is satisfied 

   maxCcount >            (30) 
Where count  is the accumulated times of the hidden unit not being activated, then the related 
hidden unit should be pruned. Since the existence of the useless units will not greatly affect the 
realisation of SW-RAN, maxC can take a relatively large value to prevent useful units being 
removed. 
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3.5 Algorithm realisation    
Based on the above discussions, the online modelling algorithm of SW-RAN can be realised as 
follows: 

 Initially, there is no hidden unit in the network. Let the bias be the first sample output: 

0yb = ; 

 for each online input sample ( )nn yx , : 
 put the sample into the sliding window and move out the oldest sample if it has; 
 count the number of not being activated for each hidden unit, remove those units not 

being activated for long time; 

 calculate: ( ) 2

2

i

in

r

cx

i ex
−

−

=φ , ( ) ( ) bxwxf
h

i
niin +=∑

=1
φ , ( )nnn xfye −= , 

nearestnn cxd −= ; 

 if minδ>nd  and  minε>ne , allocate a new hidden unit as follows: 

    nh xc =+1    

    )(1 nnh xfyw −=+  

    nh dr κ=+1  
 otherwise, adjust network unit centres, width, weights and bias as follows, until the 

maximum training epochs is reached, or the training error of samples in the sliding 
window is less than a given value: 
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    )1()()1()( −∆+∆+−= ncncncnc iiii α  

    )1()()1()( −∆+∆+−= nrnrnrnr iiii α  

    AAAA T ˆ)ˆˆ(ˆ 1−+ =   

    yAW += ˆ  
    )](),...,2(),1([)( MWWWnw =  
    )1()( += MWnb  

Finally, check if there are redundant hidden units; combine them if there are some. 

4. Simulation study 
4.1 Static function approximation problem 
This problem is studied to test whether SW-RAN is able to design a minimal RBFN that exactly 
matches the target function [9, 18]. The non-linear target function is a two-input-single-output 
system, which consists of six exponential functions as follows: 
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 (31)   

Obviously, the target function can be realised by a RBFN with six hidden units. In order to evolve 
a minimal RBFN using SW-RAN method, 121 training patterns  ( )yxx ),,( 21  are provided, 

where ( )21, xx  is the input, y  is the output, { }1,...,1.0,0∈ix , { }2,1∈i . 

 
Fig. 2  Evolution of the hidden units 

 
Table 1  True and estimated centres, width and weight 

True centre (0.3,0.2) (0.7,0.2) (0.1,0.5) (0.9,0.5) (0.3,0.8) (0.7,0.8) 
Estimated centre (0.301,0.200) (0.699,0.198) (0.097,0.500) (0.900,0.500) (0.300,0.800) (0.699,0.802) 

True width 0.1 0.1 0.144 0.144 0.1 0.1 
Estimated width 0.098 0.099 0.139 0.149 0.099 0.099 

True weight 1.0 1.0 1.0 1.0 1.0 1.0 
Estimated weight 1.038 1.008 1.013 0.966 1.040 1.004 

 
The learning parameters of SW-RAN are set as follows (some of these parameters will not be used 
in simulation): minε =0.02, minδ =0.3, combination threshold minc∆ =0.01, minr∆ =0.01, 

activating threshold mina =0.01, maxC =400, overlap coefficient κ =1.0, length of sliding 

window L =60, learning rate η =0.5, momentum rate α =0.5, maximum training epoch 

MaxEpoch=100, minε∆ =0.0001, and the maximum and minimum values of width are minr =0.05, 

maxr =0.25 separately. 
Fig. 2 displays the evolution of the number of hidden units in SW-RAN during the learning 
procedure. Table 1 presents the comparisons of true and estimated centres, width and weights. 
From Table 1, it can be seen that the estimated values are very close to the true values. This 
simulation proves that SW-RAN can realise a given minimal RBFN quite well and the results are 
much better than the results presented in reference [9] and [18]. When the learning process finishes, 
the estimated bias is 001.0−=b , which is very close to the true value as well. 

 
4.2 Non-linear dynamic system identification 
This is a non-linear SISO time-varying discrete system [12,19]: 
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where )(ku  is the system input signal with uniform distributions within [ ]1,1− , )(kβ  is a 
time-varying parameter, its evolution is as follows: 
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Let 0)0( =y , generate 5000 training patterns according to the above equation. 

 
Fig. 3 Evolution of hidden units 

 
Fig. 4 Evolution of error ( dI ) 

 
Set the learning parameters of SW-RAN as follows: minε =0.01, minδ =1.5, minc∆ =0.01, 

minr∆ =0.01, mina =0.01, maxC =200, κ =0.9, L =100, η =0.5, α =0.5, MaxEpoch=200, 

minε∆ =0.00001, minr =0.5, maxr =2.5. 

For a certain training set, Fig 3 demonstrates the changes of hidden neurons together with )(kβ . 

If 0.1)( =kβ , SW-RAN fits well with the target function with 8 hidden units when 600=k ; 

when 1600=k , the number of units increases to 9 while 9.0)( =kβ ; when 3100=k  or so, 

the number of units becomes 10 while 8.0)( =kβ . After that, the number of hidden units 
remains unchanged. 
For comparison, the following error criterion is used [12, 19]: 

     ∑
−

=

−−−=
1

0
)(ˆ)(1)(

L

p
d piypiy

L
iI         (34) 

Fig 4 shows the evolution history of error index dI . It can be seen from Fig 4 that dI  increases 
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obviously when )(kβ  changes at 1500=k  and 2500=k , then they are depressed by 
SW-RAN very soon.  
In Table 2, the identification results of SW-RAN, MRBF and ONSAHL are compared, where davI  

is the average value of dI  calculated from 1500=k  to 5000=k . The results of MRBF and 
ONSAHL are taken from the reference [12]. From Fig 3, Fig 4 and Table 2, it can be seen that 
SW-RAN performs better than MRBF and ONSAHL on learning speed, training error and the final 
hidden units. 
Worthy of noting, because of the randomness of training sets, the training results also have some 
kind of randomness. During the 10 tests being made, the number of hidden units fluctuates within 
10～13 and davI  within 0291～0.0407. So, the results are still quite stable. 
 

 
Table 2  Comparison of identification results of ONSAHL, MRBF and SW-RAN 

Performance Hidden units davI  

ONSAHL 25 0.0586 
MRBF 11 0.0326 
SW-RAN 10 0.0311 

4.3 Prediction of chaotic time series 
In this section, the SW-RAN is applied to model and predict future values of a chaotic time series 
– the Mackey-Glass (MG) data set [20], which has been used as a benchmark in neural networks, 
fuzzy systems, and hybrid systems. The time series is created by using the MG time-delay 
differential equation defined as below: 

  
( ) ( )

( ) ( )tx
tx

tx
dt

tdx 1.0
1

2.0
10 −

−+
−

=
τ
τ

         (34) 

To obtain the values of this time series at integer points, the fourth-order Runge-Kutta method is 
used to get the numerical solution to the above MG equation. Here, assume the time step is 
0.1, 0)( =tx , 17=τ  and 2.1)0( =x  for 0<t .  

The task is to predict the value ( )50+tx  from the input vector 

( ) ( ) ( ) ( )[ ]txtxtxtx 61218 −−−  and test the robustness of SW-RAN on the changes of the 

learning parameters. The following experiment is conducted: 1500 data points, from t＝201 to 

1700, are used as learning data, and 500 data points, from t＝3001 to 3500, are used as testing 
data. 
The parameters used in this experiment are set as follows: minε =0.01, minδ =0.15, minc∆ =0.01, 

minr∆ =0.01, mina =0.0001, maxC =400, κ =0.9, L =300, η =0.5, α =0.5, MaxEpoch=200, 

minε∆ =0.0001, minr =0.01, and maxr =2.5. 
Fig 5 presents the changing number of the hidden neurons during the learning procedure. Fig 6 
records the changing history of the training error and testing error. The training error is calculated 
according to the samples in the sliding window while the testing error is normalised rooted mean 
square error (RSME). After being trained on 1500 patterns, the final number of the hidden units is 
45 and the normalised RSME on 500 test samples is 0.0427. From Fig 5 and Fig 6, it can be seen 
that the test only uses no more than 1500 patterns to fit well on MG time series, in addition, with 
more compact network structure and less testing error. It’s obvious that SW-RAN performs better 
than RAN [7, 8]. 
As mentioned before, SW-RAN shows good robustness against changing learning parameters. To 
test the robustness of SW-RAN, the values of main parameters are changed in simulation. The 
testing results are presented in Table 3. The parameters being changed are minε , minδ , sliding 

window length L , and maximum training epochs MaxEpoch. The number of hidden units and 
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normalised RSME for different parameters are also listed in Table 3. The results show that the 
fluctuations of network structures and testing errors are much more smooth than RAN [7, 8], 
which proves that SW-RAN has good robustness and makes the parameters easier to tune. 
 

 
Fig.5 Evolution of hidden units 

 
Fig.6  Evolution of training error and normalized RSME 

 
Table 3  Result comparison with different learning parameters 

minε  minδ  L  MaxEpoch Hidden Unit 
Normalized 

RSME 

0.010 0.15 300 200 45 0.0427 

0.005 0.15 300 200 62 0.0668 

0.015 0.15 300 200 46 0.0622 

0.010 0.18 300 200 35 0.0540 

0.010 0.12 300 200 62 0.0393 

0.010 0.15 250 200 46 0.0443 

0.010 0.15 350 200 45 0.0430 

0.010 0.15 300 100 45 0.0427 

5. Discussions and conclusions 
In this paper, some problems of current online modelling methods are addressed firstly. Then, an 
online RBFN modelling method using sliding window called SW-RAN is proposed. The proposed 
method incorporates sliding window with resource-allocating networks to gain some additional 
benefits for online modelling. The issues of network structure and parameters’ online adjustment, 
including operations of adding, combining and pruning hidden units, modifications of unit centres, 
weights and bias, are discussed to online design a compact network that satisfies the accuracy 
requirement and has a good generalisation ability. Three benchmark examples demonstrate that 
SW-RAN has the abilities of building minimal models, adapting to time-varying plants, and being 
robust to the changes of the learning parameters. 
For an online modelling method, it’s also important to consider the issue of real time realisation. 
The simulation results in this paper show that SW-RAN can satisfy the real time requirements of 
most practical applications. In the testing examples of 4.2 and 4.3, a simple test on learning time of 



 13

SW-RAN is conducted. The simulation is implemented by VC++ 6.0, the operation system of the 
PC is Windows XP, and the CPU of the PC is Pentium 2.0GHz. The results present that the average 
learning time of SW-RAN is less than 0.2 second for every new training pattern, even with worse 
learning parameters. This is fast enough to meet the real time requirements of most applications. 
Of course, digital signal processing (DSP) chips may be used to meet faster speed requirement. 
However, SW-RAN is supposed to know the order of the model in advance and its only structure 
parameter need to be adjusted is the number of hidden units. In reality, it is also common that the 
model order is unknown and needs to be determined online. For example, in the identification of 
NARMARX model in equation (4), the value of um  and ym  sometimes also need online 

determination. How to determine the model order together with the number of hidden units is an 
issue need to be further investigated.  
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