
1

Mining Process Models with Duplicate Tasks from Workflow Logs

JiaFei Li, Dayou Liu*
College of Computer Science & Technology JiLin University, Changchun, 130012, China

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education ,
 Jilin University, Changchun 130012 China

jiafei@jlu.edu.cn; dyliu@jlu.edu.cn(*corresponding author)

Abstract

Current workflow management systems (WFMS)
require user to provide explicit process models. The
design of model is a difficult, costly and error-prone
task. This presents a practical barrier to the adoption
of workflow management technologies. A possible
solution is process mining which can distill workflow
models from a set of real executions. However, the
present research in process mining still meets many
challenges. The problem of duplicate tasks is one of
them, which refers to the situation that the same task
can appear multiple times in one workflow model. The

-algorithm is proved to mine sound Structured
Workflow nets without task duplication. Combining
techniques of machine leaning and the -algorithm, a
new algorithm called * that can deal with duplicate
tasks is proposed and has been implemented in a
research prototype. In nine scenarios, the *-algorithm
is evaluated experimentally to show its validity.

Keywords: process mining, workflow mining,
duplicate tasks, Petri nets, workflow nets.

1. Introduction

To produce more in less time, enterprises typically
prescribe business processes that specify the way in
which the resources are utilized. The quality and the
accuracy of the business process directly decide the
performance of an enterprise. Workflow management
systems (WFMS) offer the functionality to manage and
support operational processes.

Current workflow systems assume that a model of
the process is available and the main task of the system
is to insure that all the activities are performed in the
right order and the process terminates successfully [3].
The user is required to provide the process model
before it is enacted. Unfortunately, designing a formal
model for an on-going, complex process is quite
difficult, expensive, and error-prone. This forms a
practical barrier to the adoption of workflow
management systems.

To solve the problems mentioned above, instead of
beginning with the process design, the technique of
process mining starts by gathering information about
the process execution and distracts a structured process
description from these real executions. Process mining
can ease the introduction of a workflow management
system. An enterprise with an installed workflow
system can also benefit from its help in the evaluation
of the workflow system by comparing the distilled
models with pre-defined models. It can also allow the
evolution of the current process model into future
versions of the model by incorporating feedback from
successful process executions [3].

Data mining is the name given to the task of
discovering information in data, which provide a stable
foundation for process mining [10]. Different data
mining methods can target different kind of data, such
as relation database, images, time series and sequence
data. Process mining handles the data which is the
information recorded in the event logs and belongs to
sequence data. Information systems using transactions
(such as ERP, CRM and SCM) can provide such kind
of data. The goal of process mining is to distill
information about processes from event logs which
record every event that occurred during workflow
process execution. The event here refers to a task in a
workflow instance and all events are totally ordered.
The framework of process mining is depicted in Figure
1.

 Figure 1.Framework of Process Mining

Process mining can be viewed as a three-phase
process: pre-processing, processing and post-processing
[8]. Most research in process mining focuses on mining
heuristics primarily based on binary ordering relations
of the events in a workflow log. A lot of work has been
done on utilizing heuristics to distill a process model
from event logs and many valuable progresses are made

2

in the domain. However, all the existing heuristic-based
mining algorithms have their limitations [8, 9]. There
are still many challenging problems that the existing
mining algorithms cannot handle. Duplicate tasks are
one of them. It refers to the situation that one process
model (e.g., a Petri net) has two or more nodes referring
to the same task. Figure 2 shows a workflow model
with three duplicate tasks (i.e. task X, task D and task E)
represented in Petri nets. However, it is very difficult to
automatically construct a process model from the event
log of this model, because it is impossible to distinguish
the task in one case from its cognominal task in the
other cases.

 Figure 2. A workflow model with duplicate tasks

The -algorithm [8] is proved to correctly distill
sound Structured Workflow nets (SWF-nets, [8]) which
have no task duplication [9]. The main idea of our
method to handle the duplicate tasks is as follows. First,
in the pre-processing phase, those tasks with same label
are identified by our heuristic rules and marked with
different labels in the log. Then, the -algorithm is
adopted to discover a workflow model from the
identified log. Finally, during post-processing, the
distilled model (in our case a Petri-net) is fine-tuned by
recovering the marked task to their original label and a
workflow model with duplicate tasks is obtained. The
new mining algorithm based on the -algorithm is name
as *.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 presents the
new approach to tackle task duplication using the -
algorithm. Section 4 concludes the paper and points out
future work.

2. Related work

The idea of process mining is accepted widely for
several years [3, 4, 5, 8, 10]. In the beginning, the
research results are limited to sequential behavior. To
extend to concurrent processes, Cook and Wolf propose
several metrics (entropy, event type counts, periodicity,
and causality) and apply them to distill models from
event streams in [4]. However, they do not give any
method to generate explicit process models. In [5, 6]
Herbst and Karagiannis are also use an inductive
approach to perform process mining in the context of
workflow management. Two different workflow
induction algorithms which are based on hidden

Markov models are provided in [5]. The first method is
a bottom-up, specific-to-general method and the other
applies a top-down, general-to-specific strategy. These
two strategies are limited to sequential models. The
approach described in [6] is extended to tackle
concurrency. Their approach is divided into two steps:
induction step and transformation step. In the induction
step task nodes are merged and split in order to extract
the underlying process which is represented by
stochastic task graphs. The stochastic task graph is
transformed into an ADONIS workflow model in the
transformation step. A notable difference with other
approaches is that the approach allows for task
duplication. The work of Aalst and his team members is
characterized by the focus on workflow processes with
concurrent behavior. In [10] a heuristic approach is
provided to construct so-called dependency/frequency
tables

and dependency/frequency graphs . The
approach is practical for being able to deal with noise.
Another formal algorithm called -algorithm is
provided and proved to correctly distill workflow
models represented in Petri-net from event logs and an
extended version of the -algorithm to incorporate short
loops (i.e. length-one loops and length-two loops) is
also presented in [8]. However, these algorithms are
restricted to process models without duplicate tasks.

Compared with existing work, our work is
characterized by the focus on concurrent workflow
processes with task duplication behavior. Therefore, we
want to distinguish duplicate tasks in the workflow log
explicitly. To achieve this goal, the machine learning
techniques are combined with Workflow nets (WF-nets,
[2]) in this paper. Actually, WF-nets are a subset of
Petri nets that provide a graphical but formal language
to represent the workflow model. Our approach results
in a workflow model of Petri-net directly without
additional transformation step.

3. Solution to Tackle Duplicate Tasks

In this section the details of the new algorithm that
can handle duplicate tasks are presented. First, the
predecessor/successor table (P/S-table) of task which
helps us to find duplicate tasks is constructed. Then,
according to the P/S-table, several heuristic rules are
given to identify the duplicate tasks. Last, an algorithm
(called *) that correctly mines sound WF-nets with
duplicate tasks is provided.

3.1. Construction of the Predecessor/Successor
Table

The starting point of our algorithm is to construct
P/S-table of each task. For each task A that occurs in
every workflow trace, the following information is
abstracted out of the workflow log: (i) the name of the
task that directly precedes task A (notation PT), (ii) the

3

name of the task that directly follows task A
(notation ST). The distilled information of task A is

reserved in P/S-table.

Table 1. An event log of the model of Figure 2

case id event trace

1 X A B X D F E H

2 X A B X E D G H

3 X A B X E G D H

4 X A B X D E F H

5 X A B C A B X D F E H

6 X A B C A B X E D G H

7 X A B C A B C A B X D E F H

8 X A B C A B C A B X E G D H

According to the process model of Figure 2, a
random workflow log with 1000 event sequences
(10550 event tokens) is generated. As an example,
Table 1 shows the distinctive workflow traces which
represent all the possible occurrences of every task in
the log. The preceding task and the following task of
every task X in each representative trace are listed in
Table 2. The P/S-table seems clear without extra
explanation except the notation of task identifier. The
meaning of ,i (t N)

is the Nth occurrence of task named

by t in the workflow trace called i . For example,

,1(X 1)

is the first occurrence of task X in 1 and

,5(X 2)

is the second occurrence of task X in 5 .

Notice that two nodes of task X both belong to the
sequential event stream, while one node of task D is
included in a concurrent event stream (the AND-split in
E).

Table 2. An example P/S-table for task X

task identifier

TP TS

1(X,1)

A

1(X,2)

B D

2(X,1)

A

2(X,2)

B E

3(X,1)

A

3(X,2)

B E

4(X,1)

A

4(X,2)

B D

5(X,1)

A

5(X,2)

B D

6(X,1)

A

6(X,2)

B E

7(X,1)

A

7(X,2)

B D

8(X,1)

A

8(X,2)

B E

Table 2 indicates that (i) the predecessors of
,1(X 1) and ,1(X 2) are different, (ii) the successors

of ,1(X 1) and ,1(X 2) are also distinct, (iii) the

predecessors and successors of ,1(X 1) and ,2(X 1) are

identical, (iv) the predecessors of ,1(X 2) and

,2(X 2) are same while their successors are unlike.

Finally, (v) if X is preceded by B, sometimes X is
followed by D and sometimes by E.

Table 3. An example P/S-table for task D

task identifier

TP TS

1(D,1)

X F

2(D,1)

E G

3(D,1)

G H

4(D,1)

X E

5(D,1)

X F

6(D,1)

E G

7(D,1)

X E

8(D,1)

G H

Table 3 depicts the predecessor and successor of task
D. It can be concluded from Table 3 that (i) the
predecessor and successor of ,1(D 1) are quite different

with those of ,2(D 1) and ,3(D 1) , (ii) the predecessors

of ,1(D 1) and ,4(D 1) are same while their successors

are unlike, (iii) the predecessors and successors of
,2(D 1) are cross-equivalent with those in ,3(D 1) and

,4 (D 1) . It is remarkable that the other occurrences of

X and D in the left traces is similar with the above
situations. In the next section we will use the P/S-table
in combination with several relatively simple heuristics
to identify the duplicate tasks.

3.2. Identification of Duplicate Tasks

The identification of duplicate tasks in a sequential
workflow model is relatively easy. If it always the case
that, the predecessors and successors of the tasks with
same name are different, then it is plausible that they
are two tasks owing same name. On the other hand, if
the tasks sharing same name also have same
predecessors and successors, it is no doubt that they
refer to unique task. Nevertheless, the situation in a
concurrent workflow model is more complicated. In
many cases, although the cognominal tasks in two
workflow traces have distinct predecessors and
successors, we can not decide whether the two tasks are
duplicate tasks or not, because the predecessors and
successors may be cross-equivalent (i.e., the case that
one predecessor equals to other successor). This occurs
not only when the unique task belongs to a concurrent
event stream but also when there are duplicate tasks.

4

In the previous section we observed that the
information in the X-P/S-table strongly suggests that

,1(X 1) and ,1(X 2) are duplicate tasks because their

predecessors and successors are quite different, and are
not cross-equivalent also. Basing on the information in
the in the D-P/S-table, the similar conclusion can be
drawn on ,1(D 1) and ,2(D 1) . In line with these

observations, rule (1), the first heuristic rule to identify
duplicate tasks is given below:

' ' ' 'IF AND AND AND (1)

THEN < , , , > U
S S S S

i 1 j 2

P P P P((T T) (T T) (T T) (T T))

(t N) (t N)

In rule (1), the first condition '
P P(T T) is used to

judge that the predecessors of two occurrences of task t
are different. The second condition determines the
difference of their successors. Finally, the third
condition and the fourth one state the requirement that
there are not cross-equivalence between the preceding
tasks and the following tasks. If four conditions are all
satisfied, we can judge that the tuple consisting of two
occurrences of task t belongs to U, the set of duplicate
tasks. Applying this heuristic rule on the P/S-tables
extracted from the log in Table 1, we obtain the result
workflow log in Table 4. Comparing the workflow log
of Table 4 and the process model of Figure 2, it can be
seen that some of the duplicate tasks such as X is
identified correctly. However, rule (1) can not
distinguish the unique task belongs to a concurrent
event stream with the duplicate tasks. For instance,

,2(D 1) and ,3(D 1) correspond to the unique task D,

but they are marked as different tasks in Table 4.
In fact, in the case of cross-equivalence, if we can

determine the task belongs to a concurrent event stream,
the cognominal occurrences in two workflow traces can
be confirmed to be a unique task, otherwise the two
occurrences are corresponding to duplicate tasks. The
property of the task in the concurrent case is illustrated
by the following representative example. First, two
functions of ,pred(t) and ,succ(t)

are defined to get

the predecessor and successors of task t in trace

respectively.

Table 4. An identified event log of the log in Table 1

case id event trace

1 X A B X1 D F E H

2 X A B X1 E1 D1 G H

3 X A B X1 E1 G D2 H

4 X A B X1D E2 F H

5 X A B C A B X1 D F E H

6 X A B C A B X1 E1D1G H

7 X A B C A B C A B X1 D E2 F H

8 X A B C A B C A B X1 E1 G D2 H

In event trace 3 of Table 1, the predecessor of

,3(D 1) is G and ,3pred(G) is E which is just the

predecessor of ,2(D 1) . In 2 , the successor of

,2(D 1) is G and ,2succ(G) is H which is just the

successor of ,3(D 1) . The ,1(E 1) and ,4 (E 1) also

have the similar property. In line with the observations,
the first heuristic rule (1) is extended with rule (2) and
(3):

' ' 'IF AND , OR , (2)

THEN < , , , > U

P S P i P S j S

i 1 j 2

((T T) ((T pred(T)) (T succ(T)))

(t N) (t N)

' ' 'IF AND , OR , (3)

THEN < , , , > U

S P P j P S i S

i 1 j 2

((T T) ((T pred(T)) (T succ(T)))

(t N) (t N)

 Rule (2) and (3) specify the situation without
concurrency. In rule (2), the first condition

'P(T Ts) is used to judge that the predecessor of

,i 1(t N) and the successor of ,j 2(t N)

are cross-

equivalent. The second condition determines the
difference of the predecessors of ,j 2(t N) and the

predecessor of ,i 1(t N) . And the third condition is

similar with the second one which states the
requirement that the successors of ,i 1(t N) and the

successor of ,j 2(t N) are not equal. If these three

conditions are all meet, we can determine that the tuple
consisting of two occurrences of task t belongs to U.
Rule 3 prescribes another similar situation. In the next
section, the three rules are applied to identify the
duplicate tasks in a workflow log.

3.3. Generating WF-nets from the identified
workflow log

The solution to tackle duplicate tasks in sound WF-
nets focuses on the pre- and post-processing phases of
process mining [8]. The assumption about the
completeness and noise free of a log is continued to use.
The main idea is to identify the duplicate tasks and give
them different identifiers. Any duplicate tasks can be
identified by searching and checking the P/S-table of
the task with the three heuristic rules above. The
inspection of P/S-table follows the sequence of the
occurrence of task in every event trace. If the task is
determined to belong to duplicate tasks, it is renamed at
the same time. The method of renaming is to append a
serial number to the original task name.e.g.B1, B2, 1A,
1B. It is convenient that the original task name and the
serial number are taken from distinct character sets. We
need not to compare the task that has been checked and
unmarked with its backwards cognominal tasks because
the same task before it has compared with them already.
Similarly, if the task to check has been marked, it is

5

unnecessary to compare it with the original task. In
Table 4, the task D1 in 2

requires to compare with D2

in 3 , D1 in 6

and D2 in 8 instead of D in 4 , 5

and 7 .

The algorithm called * based on these heuristics is
presented in Figure 3. Let T be a set of tasks and W be a
workflow log over T, the -algorithm as in Definition
2.16 and the ordering relations as in Definition 2.14 in
[8].

Figure 3. The *-algorithm to mine duplicate tasks

The algorithm of * works as follows. First, it
examines the log traces (Step 1). Then the input log

DTW to be processed by the -algorithm, the flag
isDup to describe whether there are duplicate tasks and
the flag isIdentify to depict whether to identify the
original input log W are initialized in steps 2 to 4. Then,
in Step 5, the P/S- table

of each task is generated,
each table is checked to find the duplicate tasks based
on the previous three heuristic rules in function
judgeDuplicate, the found duplicate tasks are identified

in tuple ' of , the renamed task t

is added in logT

for further inspection and accordingly the previous log

DTW

is also marked and the result is still reserved in

DTW . In Step 6, the -algorithm discovers a workflow

net based on the identified workflow log DTW and the
ordering relations as defined in Definition 2.14 in [8].
The identifiers of the duplicated tasks are recovered to
the original task name and their respective input and
output arcs are adjusted accordingly in steps 7 to 9.
Finally, the workflow net with the duplicate tasks is
returned in Step 10. In the next section our
experimental results of applying the above-defined
approach on other workflow logs are reported.

3.4. Experiments

To evaluate the above described heuristics we have
developed a research prototype which includes the *-
algorithm. The prototype can read a text file containing
workflow traces produced by a WFMS of Staffware. By
using Staffware, a wide variety of workflow traces of
workflow models with different sizes and structural
complexities can be generated. Nine different workflow
traces are used to test our approach. One of these
examples is taken from Herbst [5] to simply compare
our method with model splitting. The number of tasks
these models contain range from four tasks to twelve
tasks which are shown in the working model of Figure
2 and the amount of duplicate tasks among them vary
from one to four. Sequential processes, concurrent
processes and loops are all included in our example
models. For each model a random workflow logs with
1000 event sequences is generated.

Due to space limitation, it is not possible to depict all
workflow models, the resulting P/S-tables and every
WF-net deduced within the experiments in detail.
Nevertheless, after applying our approach on the nine
noise-free and complete workflow logs, the duplicate
tasks in these logs are indeed identified accurately and
the result WF-nets of the experiment is equivalent to
the correct WF-nets. The equivalence here refers to
structural equivalence. Mining the example log taken
from Herbst [5] also results in an equivalent model with
Herbst s result.

4. Conclusion and Future Work

In this paper, we focus on the extension of the -
algorithm so that it can mine WF-nets with duplicate
tasks. The learning algorithm is named as *. The -
algorithm is proven to correctly discover sound SWF-
nets without task duplication. Changes in the pre- and
post-processing phases are mainly involved in the
extension. The details of * is presented in three steps:
Step (i) the construction of the P/S-table, step (ii) the
identification of duplicate tasks based on P/S-table, and

Algorithm *(W. N)
/*the extended -algorithm to

tackle duplicate tasks*/
1. logT

{ | []}Wt T t .

2. DTW W .
3. isDup false.
4. isIdentify false.
5. FOR logt T DO

(buildPSTable(, DTt W).
FOR DO

(' ' '{ | } .

FOR ' ' DO

 (isDup judgeDuplicate(',).
 IF isDup THEN
 (// t

is the renamed task of task t
t

renameTask(t, ' ,).
 logT { '}logT t .

isIdentify true.).).).
IF isIdentify THEN

 DTW

IdentifyLog(,DTW).).

6. (DTW
P , DTW

T , DTW
F) ()DTW .

7. WP

DTW
P

8. WT

eliminateTMark(DTW
T).

9. WF

eliminateFMark(DTW
F).

10. N (WP , WT , WF)

6

step (iii) the generation of the WF-net out of the
identified workflow log using -algorithm.

In the experimental section, we applied our
algorithm on nine different workflow models with
duplicate tasks. Sequential process, concurrent process
and loops are included in these different models. For
each model, we generated a random workflow log with
1000 event sequences. The experimental results show
that our approach is valid to induce WF-nets with
duplicate tasks.

In spite of the reported results, a lot of future work
needs to be done. Firstly, the number of our test logs
are limit, more experiments must to be done. Secondly,
the theoretical basis of our learning algorithm needs to
be improved. Finally, the above results are obtained by
presupposing that the logs are complete and noise free.
However, this situation appears rarely in real logs. Thus,
to make our approach more practical, the heuristic
mining techniques and tools which are less sensitive to
noise and the incompleteness of log must to be
developed.

Acknowledgement

This work is supported by NSFC Major Research
Program 60496321, Basic Theory and Core Techniques
of Non Canonical Knowledge; National Natural
Science Foundation of China under Grant Nos.
60373098, 60573073, the National High-Tech Research
and Development Plan of China under Grant
No.2003AA118020, the Major Program of Science and
Technology Development Plan of Jilin Province under
Grant No. 20020303, the Science and Technology
Development Plan of Jilin Province under Grant No.
20030523.

References

[1] W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models,
Techniques, and Empirical Studies , Lecture Notes in
Computer Science , Springer-Verlag, Vol 1806, Berlin,
2000.
[2] W.M.P. van der Aalst, The Application of Petri
Nets to Workflow Management , The Journal of
Circuits, Systems and Computers, Vol 8, No.1, pp.21-
66, 1998.
[3] R. Agrawal, D. Gunopulos, and F. Leymann,
Mining process models from workflow logs ,

Proceedings of the Sixth International Conference on
Extending Database Technology, pp.469-483, 1998.
[4] J.E. Cook and A.L. Wolf, Event-Based Detection

of Concurrency , Proceedings of the Sixth International
Symposium on the Foundations of Software
Engineering (FSE-6), pp. 35-45, Orlando, FL,
November 1998.

[5] J. Herbst and D. Karagiannis, Integrating Machine
Learning and Workflow Management to Support
Acquisition and Adaptation of Workflow Models ,
International Journal of Intelligent Systems in
Accounting, Finance and Management, Vol 9, pp.67
92, 2000.
[6] J. Herbst, Dealing with Concurrency in Workflow
Induction , U. Baake, R. Zobel, and M. Al-Akaidi,
editors, European Concurrent Engineering Conference,
SCS Europe, 2000.
[7] S. Jablonski and C. Bussler, Workflow
Management: Modeling Concepts, Architecture, and
Implementation , International Thomson Computer
Press, 1996.
[8] A.K.A de Medeiros, B.F. van Dongen, W.M.P. van
der Aalst and A.J.M.M. Weijters, Process Mining:
Extending the -algorithm to Mine Short Loops , BETA
Working Paper Series, WP 113, Eindhoven University
of Technology, Eindhoven, 2004.
[9] A.K.A. de Medeiros, W.M.P. van der Aalst, and
A.J.M.M. Weijters, Workflow Mining: Current Status
and Future Directions , R. Meersman et al.,editors,
Lecture Notes in Computer Science, Vol 2888, pp. 389-
406, 2003,
[10] A.J.M.M. Weijters and W.M.P. van der Aalst,
Process Mining: Discovering Workflow Models from

Event-Based Data , B. Krose, M.de Rijke, G. Schreiber,
and M. van Someren, editors, Proceedings of the 13th
Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC 2001), pp.283 290, 2001.

JiaFei Li Doctoral student
received the B.S. degree in
Computer Software from Dept.
Computer Science and
Technology of Jilin University in
1997, and the M.S. degree in
Computer Application
Technology from Dept.

Computer Science and Technology of Jilin University
in 2000. Her research interests include: Workflow
management technology, Process mining, Petri nets,
Workflow nets and Data Mining.

DaYou Liu Professor. received
the B.S. degree in Optics from
Dept. Physics of Jilin University in
1966, and the M.S. degree in
Computer Technology from Dept.
Computer Science of Jilin
University in 1981. His research
interests include: Knowledge
Engineering and Expert System,

Multi Agent, Mobile Agents System and Intelligent
Agent, Spatial-Temporal Knowledge Representation
and Reasoning, Data Structure and Computing
Algorithm, Rough Set and Data Mining, Data Structure
and Computing Algorithm.

