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Abstract   

Current workflow management systems (WFMS) 
require user to provide explicit process models. The 
design of model is a difficult, costly and error-prone 
task. This presents a practical barrier to the adoption 
of workflow management technologies. A possible 
solution is process mining which can distill workflow 
models from a set of real executions. However, the 
present research in process mining still meets many 
challenges. The problem of duplicate tasks is one of 
them, which refers to the situation that the same task 
can appear multiple times in one workflow model. The 

-algorithm is proved to mine sound Structured 
Workflow nets without task duplication. Combining 
techniques of machine leaning and the -algorithm, a 
new algorithm called * that can deal with duplicate 
tasks is proposed and has been implemented in a 
research prototype. In nine scenarios, the *-algorithm 
is evaluated experimentally to show its validity.  

Keywords: process mining, workflow mining, 
duplicate tasks, Petri nets, workflow nets.   

1. Introduction  

To produce more in less time, enterprises typically 
prescribe business processes that specify the way in 
which the resources are utilized. The quality and the 
accuracy of the business process directly decide the 
performance of an enterprise. Workflow management 
systems (WFMS) offer the functionality to manage and 
support operational processes. 

Current workflow systems assume that a model of 
the process is available and the main task of the system 
is to insure that all the activities are performed in the 
right order and the process terminates successfully [3]. 
The user is required to provide the process model 
before it is enacted. Unfortunately, designing a formal 
model for an on-going, complex process is quite 
difficult, expensive, and error-prone. This forms a 
practical barrier to the adoption of workflow 
management systems. 

To solve the problems mentioned above, instead of 
beginning with the process design, the technique of 
process mining starts by gathering information about 
the process execution and distracts a  structured process 
description from these real executions. Process mining 
can ease the introduction of a workflow management 
system. An enterprise with an installed workflow 
system can also benefit from its help in the evaluation 
of the workflow system by comparing the distilled 
models with pre-defined models. It can also allow the 
evolution of the current process model into future 
versions of the model by incorporating feedback from 
successful process executions [3]. 

Data mining is the name given to the task of 
discovering information in data, which provide a stable 
foundation for process mining [10]. Different data 
mining methods can target different kind of data, such 
as relation database, images, time series and sequence 
data. Process mining handles the data which is the 
information recorded in the event logs and belongs to 
sequence data. Information systems using transactions 
(such as ERP, CRM and SCM) can provide such kind 
of data. The goal of process mining is to distill 
information about processes from event logs which 
record every event that occurred during workflow 
process execution. The event here refers to a task in a 
workflow instance and all events are totally ordered. 
The framework of process mining is depicted in Figure 
1.

            Figure 1.Framework of Process Mining  

Process mining can be viewed as a three-phase 
process: pre-processing, processing and post-processing 
[8]. Most research in process mining focuses on mining 
heuristics primarily based on binary ordering relations 
of the events in a workflow log. A lot of work has been 
done on utilizing heuristics to distill a process model 
from event logs and many valuable progresses are made 
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in the domain. However, all the existing heuristic-based 
mining algorithms have their limitations [8, 9]. There 
are still many challenging problems that the existing 
mining algorithms cannot handle. Duplicate tasks are 
one of them. It refers to the situation that one process 
model (e.g., a Petri net) has two or more nodes referring 
to the same task. Figure 2 shows a workflow model 
with three duplicate tasks (i.e. task X, task D and task E) 
represented in Petri nets. However, it is very difficult to 
automatically construct a process model from the event 
log of this model, because it is impossible to distinguish 
the task in one case from its cognominal task in the 
other cases.  

   Figure 2. A workflow model with duplicate tasks  

The -algorithm [8] is proved to correctly distill 
sound Structured Workflow nets (SWF-nets, [8]) which 
have no task duplication [9]. The main idea of our 
method to handle the duplicate tasks is as follows. First, 
in the pre-processing phase, those tasks with same label 
are identified by our heuristic rules and marked with 
different labels in the log. Then, the -algorithm is 
adopted to discover a workflow model from the 
identified log. Finally, during post-processing, the 
distilled model (in our case a Petri-net) is fine-tuned by 
recovering the marked task to their original label and a 
workflow model with duplicate tasks is obtained. The 
new mining algorithm based on the -algorithm is name 
as *. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work. Section 3 presents the 
new approach to tackle task duplication using the -
algorithm. Section 4 concludes the paper and points out 
future work.  

2. Related work  

The idea of process mining is accepted widely for 
several years [3, 4, 5, 8, 10]. In the beginning, the 
research results are limited to sequential behavior. To 
extend to concurrent processes, Cook and Wolf propose 
several metrics (entropy, event type counts, periodicity, 
and causality) and apply them to distill models from 
event streams in [4]. However, they do not give any 
method to generate explicit process models. In [5, 6] 
Herbst and Karagiannis are also use an inductive 
approach to perform process mining in the context of 
workflow management. Two different workflow 
induction algorithms which are based on hidden 

Markov models are provided in [5]. The first method is 
a bottom-up, specific-to-general method and the other 
applies a top-down, general-to-specific strategy. These 
two strategies are limited to sequential models. The 
approach described in [6] is extended to tackle 
concurrency. Their approach is divided into two steps: 
induction step and transformation step. In the induction 
step task nodes are merged and split in order to extract 
the underlying process which is represented by 
stochastic task graphs. The stochastic task graph is 
transformed into an ADONIS workflow model in the 
transformation step. A notable difference with other 
approaches is that the approach allows for task 
duplication. The work of Aalst and his team members is 
characterized by the focus on workflow processes with 
concurrent behavior. In [10] a heuristic approach is 
provided to construct so-called dependency/frequency 
tables

 

and dependency/frequency graphs . The 
approach is practical for being able to deal with noise. 
Another formal algorithm called -algorithm is 
provided and proved to correctly distill workflow 
models represented in Petri-net from event logs and an 
extended version of the -algorithm to incorporate short 
loops (i.e. length-one loops and length-two loops) is 
also presented in [8]. However, these algorithms are 
restricted to process models without duplicate tasks. 

Compared with existing work, our work is 
characterized by the focus on concurrent workflow 
processes with task duplication behavior. Therefore, we 
want to distinguish duplicate tasks in the workflow log 
explicitly. To achieve this goal, the machine learning 
techniques are combined with Workflow nets (WF-nets, 
[2]) in this paper. Actually, WF-nets are a subset of 
Petri nets that provide a graphical but formal language 
to represent the workflow model. Our approach results 
in a workflow model of Petri-net directly without 
additional transformation step.  

3. Solution to Tackle Duplicate Tasks  

In this section the details of the new algorithm that 
can handle duplicate tasks are presented. First, the 
predecessor/successor table (P/S-table) of task which 
helps us to find duplicate tasks is constructed. Then, 
according to the P/S-table, several heuristic rules are 
given to identify the duplicate tasks. Last, an algorithm 
(called *) that correctly mines sound WF-nets with 
duplicate tasks is provided.   

3.1. Construction of the Predecessor/Successor 
Table  

The starting point of our algorithm is to construct 
P/S-table of each task. For each task A that occurs in 
every workflow trace, the following information is 
abstracted out of the workflow log: (i) the name of the 
task that directly precedes task A (notation PT ), (ii) the 
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name of the task that directly follows task A 
(notation ST ). The distilled information of task A is 

reserved in P/S-table.  

Table 1. An event log of the model of Figure 2  

case id event trace 

1 X A B X D F E H 

2 X A B X E D G H 

3 X A B X E G D H 

4 X A B X D E F H 

5 X A B C A B X D F E H 

6 X A B C A B X E D G H 

7 X A B C A B C A B X D E F H 

8 X A B C A B C A B X E G D H 

 

According to the process model of Figure 2, a 
random workflow log with 1000 event sequences 
(10550 event tokens) is generated. As an example, 
Table 1 shows the distinctive workflow traces which 
represent all the possible occurrences of every task in 
the log. The preceding task and the following task of 
every task X in each representative trace are listed in 
Table 2. The P/S-table seems clear without extra 
explanation except the notation of task identifier. The 
meaning of ,i (t N)

 

is the Nth occurrence of task named 

by t in the workflow trace called i . For example, 

,1(X 1)

 

is the first occurrence of task X in 1 and 

,5(X 2)

 

is the second occurrence of task X in 5 . 

Notice that two nodes of task X both belong to the 
sequential event stream, while one node of task D is 
included in a concurrent event stream (the AND-split in 
E).  

Table 2. An example P/S-table for task X  

task identifier

 

TP TS 

1(X,1)

  

A 

1(X,2)

 

B D 

2(X,1)

  

A 

2(X,2)

 

B E 

3(X,1)

  

A 

3(X,2)

 

B E 

4(X,1)

  

A 

4(X,2)

 

B D 

5(X,1)

  

A 

5(X,2)

 

B D 

6(X,1)

  

A 

6(X,2)

 

B E 

7(X,1)

  

A 

7(X,2)

 

B D 

8(X,1)

  

A 

8(X,2)

 

B E 

Table 2 indicates that (i) the predecessors of 
,1(X 1)  and ,1(X 2) are different, (ii) the successors 

of ,1(X 1) and ,1(X 2) are also distinct, (iii) the 

predecessors and successors of ,1(X 1) and ,2(X 1) are 

identical, (iv) the predecessors of ,1(X 2) and 

,2(X 2) are same while their successors are unlike. 

Finally, (v) if X is preceded by B, sometimes X is 
followed by D and sometimes by E.  

Table 3. An example P/S-table for task D  

task identifier

 

TP TS 

1(D,1)

 

X F 

2(D,1)

 

E G 

3(D,1)

 

G H 

4(D,1)

 

X E 

5(D,1)

 

X F 

6(D,1)

 

E G 

7(D,1)

 

X E 

8(D,1)

 

G H 

 

Table 3 depicts the predecessor and successor of task 
D. It can be concluded from Table 3 that (i) the 
predecessor and successor of ,1(D 1) are quite different 

with those of ,2(D 1) and ,3(D 1) , (ii) the predecessors 

of ,1(D 1) and ,4(D 1) are same while their successors 

are unlike, (iii) the predecessors and successors of 
,2(D 1) are cross-equivalent with those in ,3(D 1) and 

,4 (D 1) . It is remarkable that the other occurrences of 

X and D in the left traces is similar with the above 
situations. In the next section we will use the P/S-table 
in combination with several relatively simple heuristics 
to identify the duplicate tasks.  

3.2. Identification of Duplicate Tasks   

The identification of duplicate tasks in a sequential 
workflow model is relatively easy. If it always the case 
that, the predecessors and successors of the tasks with 
same name are different, then it is plausible that they 
are two tasks owing same name. On the other hand, if 
the tasks sharing same name also have same 
predecessors and successors, it is no doubt that they 
refer to unique task. Nevertheless, the situation in a 
concurrent workflow model is more complicated. In 
many cases, although the cognominal tasks in two 
workflow traces have distinct predecessors and 
successors, we can not decide whether the two tasks are 
duplicate tasks or not, because the predecessors and 
successors may be cross-equivalent (i.e., the case that 
one predecessor equals to other successor). This occurs 
not only when the unique task belongs to a concurrent 
event stream but also when there are duplicate tasks.  
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In the previous section we observed that the 
information in the X-P/S-table strongly suggests that 

,1(X 1) and ,1(X 2) are duplicate tasks because their 

predecessors and successors are quite different, and are 
not cross-equivalent also. Basing on the information in 
the in the D-P/S-table, the similar conclusion can be 
drawn on ,1(D 1) and ,2(D 1) . In line with these 

observations, rule (1), the first heuristic rule to identify 
duplicate tasks is given below: 

' ' ' 'IF  AND  AND  AND     (1)

       

THEN  < , , , > U
S S S S

i 1 j 2

P P P P((T T ) (T T ) (T T ) (T T ))

(t N ) (t N )

 

   

In rule (1), the first condition '
P P(T T ) is used to 

judge that the predecessors of two occurrences of task t 
are different. The second condition determines the 
difference of their successors. Finally, the third 
condition and the fourth one state the requirement that 
there are not cross-equivalence between the preceding 
tasks and the following tasks. If four conditions are all 
satisfied, we can judge that the tuple consisting of two 
occurrences of task t belongs to U, the set of duplicate 
tasks. Applying this heuristic rule on the P/S-tables 
extracted from the log in Table 1, we obtain the result 
workflow log in Table 4. Comparing the workflow log 
of Table 4 and the process model of Figure 2, it can be 
seen that some of the duplicate tasks such as X is 
identified correctly. However, rule (1) can not 
distinguish the unique task belongs to a concurrent 
event stream with the duplicate tasks. For instance, 

,2(D 1) and ,3(D 1) correspond to the unique task D, 

but they are marked as different tasks in Table 4. 
In fact, in the case of cross-equivalence, if we can 

determine the task belongs to a concurrent event stream, 
the cognominal occurrences in two workflow traces can 
be confirmed to be a unique task, otherwise the two 
occurrences are corresponding to duplicate tasks. The 
property of the task in the concurrent case is illustrated 
by the following representative example. First, two 
functions of ,pred( t) and ,succ( t)

 

are defined to get 

the predecessor and successors of task t in trace 

 

respectively.   

Table 4. An identified event log of the log in Table 1  

case id event trace 

1 X A B X1 D F E H 

2 X A B X1 E1 D1 G H 

3 X A B X1 E1 G D2 H 

4 X A B X1D E2 F H 

5 X A B C A B X1 D F E H 

6 X A B C A B X1 E1D1G H 

7  X A B C A B C A B X1 D E2 F H 

8 X A B C A B C A B X1 E1 G D2 H

  
In event trace 3 of Table 1, the predecessor of 

,3(D 1) is G and ,3pred( G) is E which is just the 

predecessor of ,2(D 1) . In 2 , the successor of 

,2(D 1) is G and ,2succ( G) is H which is just the 

successor of ,3(D 1) . The ,1(E 1) and ,4 (E 1) also 

have the similar property. In line with the observations, 
the first heuristic rule (1) is extended with rule (2) and 
(3):  

' ' 'IF  AND , OR ,    (2)

     

THEN  < , , , > U

P S P i P S j S

i 1 j 2

((T T ) ((T pred( T )) (T succ( T )))

(t N ) (t N )

 

' ' 'IF  AND , OR ,      (3)

     

THEN  < , , , > U

S P P j P S i S

i 1 j 2

((T T ) ((T pred( T )) (T succ( T )))

(t N ) (t N )

 

      

     Rule (2) and (3) specify the situation without 
concurrency.  In rule (2), the first condition 

'P(T Ts ) is used to judge that the predecessor of 

,i 1(t N ) and the successor of ,j 2(t N )

 

are cross-

equivalent. The second condition determines the 
difference of the predecessors of ,j 2(t N ) and the 

predecessor of ,i 1(t N ) . And the third condition is 

similar with the second one which states the 
requirement that the successors of ,i 1(t N ) and the 

successor of ,j 2(t N ) are not equal. If these three 

conditions are all meet, we can determine that the tuple 
consisting of two occurrences of task t belongs to U. 
Rule 3 prescribes another similar situation. In the next 
section, the three rules are applied to identify the 
duplicate tasks in a workflow log.  

3.3. Generating WF-nets from the identified 
workflow log  

The solution to tackle duplicate tasks in sound WF-
nets focuses on the pre- and post-processing phases of 
process mining [8]. The assumption about the 
completeness and noise free of a log is continued to use. 
The main idea is to identify the duplicate tasks and give 
them different identifiers. Any duplicate tasks can be 
identified by searching and checking the P/S-table of 
the task with the three heuristic rules above. The 
inspection of P/S-table follows the sequence of the 
occurrence of task in every event trace. If the task is 
determined to belong to duplicate tasks, it is renamed at 
the same time. The method of renaming is to append a 
serial number to the original task name.e.g.B1, B2, 1A, 
1B. It is convenient that the original task name and the 
serial number are taken from distinct character sets. We 
need not to compare the task that has been checked and 
unmarked with its backwards cognominal tasks because 
the same task before it has compared with them already. 
Similarly, if the task to check has been marked, it is 
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unnecessary to compare it with the original task. In 
Table 4, the task D1 in 2

 
requires to compare with D2 

in 3 , D1 in 6

 
and D2 in 8 instead of D in 4 , 5

 
and 7 . 

The algorithm called * based on these heuristics is 
presented in Figure 3. Let T be a set of tasks and W be a 
workflow log over T, the -algorithm as in Definition 
2.16 and the ordering relations as in Definition 2.14 in 
[8].  

     

Figure 3. The *-algorithm to mine duplicate tasks  

The algorithm of * works as follows. First, it 
examines the log traces (Step 1). Then the input log 

DTW to be processed by the -algorithm, the flag 
isDup to describe whether there are duplicate tasks and 
the flag isIdentify to depict whether to identify the 
original input log W are initialized in steps 2 to 4. Then, 
in Step 5, the P/S- table 

 

of each task is generated, 
each table is checked to find the duplicate tasks based 
on the previous three heuristic rules in function 
judgeDuplicate, the found duplicate tasks are identified 

in tuple ' of , the renamed task t

 
is added in logT

 
for further inspection and accordingly the previous log 

DTW

 
is also marked and the result is still reserved in 

DTW . In Step 6, the -algorithm discovers a workflow 

net based on the identified workflow log DTW and the 
ordering relations as defined in Definition 2.14 in [8]. 
The identifiers of the duplicated tasks are recovered to 
the original task name and their respective input and 
output arcs are adjusted accordingly in steps 7 to 9. 
Finally, the workflow net with the duplicate tasks is 
returned in Step 10. In the next section our 
experimental results of applying the above-defined 
approach on other workflow logs are reported.  

3.4. Experiments  

To evaluate the above described heuristics we have 
developed a research prototype which includes the *-
algorithm. The prototype can read a text file containing 
workflow traces produced by a WFMS of Staffware. By 
using Staffware, a wide variety of workflow traces of 
workflow models with different sizes and structural 
complexities can be generated. Nine different workflow 
traces are used to test our approach. One of these 
examples is taken from Herbst [5] to simply compare 
our method with model splitting. The number of tasks 
these models contain range from four tasks to twelve 
tasks which are shown in the working model of Figure 
2 and the amount of duplicate tasks among them vary 
from one to four. Sequential processes, concurrent 
processes and loops are all included in our example 
models. For each model a random workflow logs with 
1000 event sequences is generated. 

Due to space limitation, it is not possible to depict all 
workflow models, the resulting P/S-tables and every 
WF-net deduced within the experiments in detail. 
Nevertheless, after applying our approach on the nine 
noise-free and complete workflow logs, the duplicate 
tasks in these logs are indeed identified accurately and 
the result WF-nets of the experiment is equivalent to 
the correct WF-nets. The equivalence here refers to 
structural equivalence. Mining the example log taken 
from Herbst [5] also results in an equivalent model with 
Herbst s result.  

4. Conclusion and Future Work  

In this paper, we focus on the extension of the -
algorithm so that it can mine WF-nets with duplicate 
tasks. The learning algorithm is named as *. The -
algorithm is proven to correctly discover sound SWF-
nets without task duplication. Changes in the pre- and 
post-processing phases are mainly involved in the 
extension. The details of * is presented in three steps: 
Step (i) the construction of the P/S-table, step (ii) the 
identification of duplicate tasks based on P/S-table, and 

Algorithm  *(W. N)  
/*the extended -algorithm to  

tackle duplicate tasks*/ 
1. logT

 

{ | [ ]}Wt T t . 

2. DTW W .  
3. isDup false. 
4. isIdentify false. 
5. FOR logt T  DO 

( buildPSTable( , DTt W ).   
FOR DO 

( ' ' '{ | } . 

FOR ' '  DO 

          (isDup judgeDuplicate( ', ). 
           IF isDup THEN 
             (// t

 

is the renamed task of task t  
t

 

renameTask(t, ' , ). 
                           logT { '}logT t . 

isIdentify true.).).). 
IF isIdentify THEN  

                DTW

 

IdentifyLog( ,DTW ).). 

6. ( DTW
P , DTW

T , DTW
F ) ( )DTW .  

7. WP

 

DTW
P

 

8. WT

 

eliminateTMark( DTW
T ). 

9. WF

  

eliminateFMark( DTW
F ). 

10. N   ( WP , WT , WF ) 
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step (iii) the generation of the WF-net out of the 
identified workflow log using -algorithm.  

In the experimental section, we applied our 
algorithm on nine different workflow models with 
duplicate tasks. Sequential process, concurrent process 
and loops are included in these different models. For 
each model, we generated a random workflow log with 
1000 event sequences. The experimental results show 
that our approach is valid to induce WF-nets with 
duplicate tasks.  

In spite of the reported results, a lot of future work 
needs to be done. Firstly, the number of our test logs 
are limit, more experiments must to be done. Secondly, 
the theoretical basis of our learning algorithm needs to 
be improved. Finally, the above results are obtained by 
presupposing that the logs are complete and noise free. 
However, this situation appears rarely in real logs. Thus, 
to make our approach more practical, the heuristic 
mining techniques and tools which are less sensitive to 
noise and the incompleteness of log must to be 
developed.  
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