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Abstract – This paper describes a scheme for 
reconstructing 3D human models from whole-body scan 
data. The 3D human models are composed of 
superquadric primitives each corresponding to a 
functional body part. The reconstruction starts with 
primary segmentation of scan data, which defines the 
location of the articulation link in the human scan and 
results in topologically simple (primary) body parts. 
The primary body parts are further decomposed into 
sub-parts suitable for superquadric representation. 
These segmented sub-parts are refined to achieve 
global compatibility and then fitted with superquadrics 
to complete our process.  Being based on compact 
volumetric primitives, the whole reconstruction scheme 
is able to deal directly with raw scan data comprising 
3D point clouds sampled on human body surfaces. Both 
qualitative and quantitative evaluations of the method 
are conducted.  

Keywords: 3D shape modelling, human body scanning, 
superquadric fitting, segmentation, reconstruction, 
articulated models. 

 
1 Introduction 

The recent advances in 3D imaging technology 
have enabled us to acquire dense 3D point clouds 
sampled on whole human body surfaces (human body 
scan data) with reasonable measurement accuracy and 
fast capture time [1].  Ever since the emergence of such 
technology, the need for quantitative analysis of human 
body shape has been continuously increasing, with 
applications ranging from anthropometrical research [2], 
clothing design [3], to virtual human animation [4]. 
However, due to the large diversity of human body 
shapes and postures and the ill-conditioned properties of 
scan data, processing and modelling of human scan data 
in those applications have proved a very challenging 
problem.  

Methods for human scan data processing and 
modelling previously reported in the literature mainly 
fall in two categories: surface reconstruction and surface 
parameterization. In the surface reconstruction, a surface 
representation of the human body shape is recovered 
from the point cloud sampling of the human body [5-8]; 
in the surface parameterization, the recovered surface 

representation is regularized to have the right semantic 
for its parameter domain [9-12]. However, due to the 
great complexity of the problem, the previously-reported 
methods have been designed under severe constraints. 
First of all, in order to reduce the body shape variation 
caused by postures, a standard anthropometry posture 
(standing upright with arms held at sides) has to be 
assumed [5, 6, 12]. The standard posture makes the 
shape space of human body simplified and therefore 
reduces the complexity in characterising human body 
shapes. Secondly, many approaches require strict data 
properties, e.g., complete body surface coverage [10, 
11],  detailed specification of body scanning equipments 
[5, 8, 9], etc. How to systematically generalize those 
researches is still an open issue. Finally, the use of 
manual intervention [7, 11] is usually involved in human 
body scan data processing and modelling, which 
seriously limits the throughput and efficiency. 

The objective of this research is to relax the 
constraints of the previous methods for 3D scan data 
analysis, which have narrowed the range of tasks to 
which 3D human scan data can be applied. To this end, 
a general human scanning scenario is assumed so that no 
constraints on subject postures and data properties will 
be imposed. Under such assumptions, we have devised a 
fully automatic scheme for reconstructing human body 
shapes directly from 3D scan data up to a gross level of 
structure. The human models employed are composed of 
superquadrics, which are compact volumetric primitives 
that can represent a large variety of shapes with just a 
few parameters. The reconstructed superquadric human 
models alone can be directly utilised in applications 
where only gross human geometry is required such as 
computer games, virtual environments, manikin 
manufacturing, etc.  Moreover, while providing a simple 
parameterization of the human body and having the 
potential to be extended to represent surface details, the 
superquadric human models could serve as an 
intermediate step in the computation of realistic human 
shapes.  

The reminder of the paper is organized as follows. 
Section 2 describes the superquadric model we use to 
reconstruct human body shape. Section 3 discusses the 
reconstruction scheme. Some experimental results are 
presented in Section 4, followed by conclusions in 
Section 5. 



2 Superquadric human model  
The superquadric is a well-known part-level model 

in the field of computer vision and graphics.  Being an 
extension of the quadric surface, the superquadric 
incorporates two shape control parameters 1ε  and 2ε to 
adjust the curvature of its surface (see Eq (1)). 
Therefore, a superquadric is able to represent a much 
larger range of shapes than the traditional quadric 
surface. The implicit form of the superquadric is defined 
as follows. 
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The shape of the superquadric (1-isosurface of the 
function f) is controlled by parameters 1ε  and 2ε . When 

1ε  2ε  vary, the shape smoothly changes. In the special 
case of 121 == εε , the superquadric degenerates to a 

common ellipsoid. 1a , 2a , 3a  are scaling factors on x-, 

y-, z- axis respectively. 

While the implicit form of the superquadric is 
convenient for the tasks of fitting and collision 
detection, the superquadric surface can also be 
represented in an explicit way using spherical product 
[11], which not only provides a direct method for 
evaluating the superquadric surface but also produces a 
simple parameterisation for the surface that can 
effectively facilitate some further operations on the 
surface such as surface registration and displacement 
construction. 

The representational strengths of the superquadric 
make it suitable for representing blob-like shapes [13, 
14], especially shapes formed by natural processes [15]. 
Hypothesising that human body parts belong to this 
category, we propose to employ superquadrics to build 
up a human body model, with each superquadric 
representing a functional body part. The superquadric 
itself is symmetric along its three principal axes. 
Therefore, we further extend the superquadrics 
formulation with a tapering deformation [16] applied to 
the dominant principal axis of each superquadric, which 
allows for scale change along this axis. Such scale 
change is evident when human body parts are “thick” 
and “thin” at different areas along their axes. The 
formulation of the tapering deformation is as follows. 
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In Eq. (2), ],,[ zyx=X  denotes a point on the original 

superquadric surface and ],,[ DDDD zyx=X  represents 
a point on the deformed superquadric surface.  

The whole superquadric human model comprises 
of 15 superquadrics each corresponding to a functional 
body part and a kinematic link between body parts. The 
15 functional body parts include 1 head, 1 upper torso, 1 
lower torso, 2 upper arms, 2 lower arms, 2 upper legs 2 
lower legs, 2 hands, and 2 feet. The partitioning of the 
body parts is a compromise between accuracy and 
efficiency, as the resolution of whole-body scan data is 
normally not sufficient to capture the detailed shape of 
finer body parts such as fingers and toes. The kinematics 
of the functional body parts, are expressed as rigid 
transformations between the parts and a reference frame 
called world coordinate frame.  

TRXXX +== DDw K )(                      (3) 

Note that Eqs (1), (2), and (3) are all differentiable, 
which endows the proposed human model with strong 
analytic properties which facilitate robust recovery of a 
stable model from the data (see Section 3.1).  

It is worth mentioning that similar superquadric-based 
human models have been reported in the literature, 
mostly for tracking human figures in image sequences 
[17-19], in which superquadrics are applied to represent 
the shape of the human figures. However, the context of 
human tracking is significantly different from that of this 
research.  The objective of human tracking is to resolve 
motion information of human figures from 2D image 
data, while the objective of this research is to capture 
human shapes from 3D point clouds. Therefore 
techniques involved for human tracking can not be 
applied directly in this research.  

 

3 Reconstruction of superquadric men 
3.1 Part fitting 

Given data points sampled on a body part, we fit a 
superquadric to this data set and thereby represent the 
body part by a corresponding superquadric primitive and 
its associated parameters. Due to the differentiability of 
the proposed superquadric models, it is possible to fit the 
models analytically to the underlying data. Employing 
the algebraic distance proposed by Solina [20], 
superquadric fitting can be formulated as follows: 
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Here i
wX  represents the i-th data point and P is a vector 

comprising all parameters of the superquadric including 
its shape parameters, scaling parameters, tapering 
parameters and kinematic parameters. Because f, T and 



K are all differentiable, the fitness function to be 
minimised (4) is also differentiable and this property 
allows us to utilise derivative-driven methods to 
optimise the minimisation process (4). Specifically, we 
chose the Levenberg-Marquardt approach [21] because 
it is designed specifically to optimise a fitness function 
in the form of square sum. The shape control parameters 
are subject to boundary conditions of: 

5.15.0 1 ≤≤ ε , 5.15.0 2 ≤≤ ε  to avoid over-fitting during 
optimisation. Fitting progresses iteratively and in each 
iteration step the parameter vector P is updated using the 
following equation: 
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Since both the Jacobian matrix J(P) and the gradient 
vector G(P) in Eq. (5) can be computed analytically, a 
close-form optimisation solution can be found. 
 

The iterative fitting process requires that the 
parameters in P be initialised. To achieve, on average, a 
fast convergence rate we initialise 1ε  2ε  to their mid-
range values, i.e., 121 == εε  and the tapering 
parameters are set initially to induce no tapering 
deformation, i.e., 0== yx kk . The rotation, translation 

and scaling parameters are initialised using Principal 
Component Analysis (PCA) which fits an ellipsoid to the 
3D point cloud data based on statistical criteria [22]. The 
data distributions projected on the principal axes of the 
ellipsoid recovered by PCA are assumed to be Gaussian 
and their associated standard deviations are used to 
initialise the superquadrics scaling parameters 1a , 2a , 3a  

as follows: 
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where xσ , yσ , zσ  denote standard deviations on the 

principal axes (denoted as x-,y-,z-axes) respectively. The 
rigid transformation parameters (rotation and translation) 
of the superquadric are initially computed by aligning 
the axes of the superquadric to the principal axes of the 
ellipsoid fitted to the data using PCA. 
 

3.2 Body shape decomposition 

Fitting a superquadric to a specific body part 
requires that the data points corresponding to the body 
part under analysis be segmented out of the whole scan 
dataset. This task is known as body shape decomposition 
and proves difficult when large body form variations and 
posture change are involved and when the scan data 
itself is deficient (as described in section 1). We tackled 
this problem in three stages. In the first stage a coarse 
segmentation (called primary segmentation) is applied to 
decompose the whole body data into primary body parts, 
i.e., torso and four limbs. The second stage comprises a 
finer segmentation (called secondary segmentation) 
using a “fit-and-segment” scheme, which iteratively fits 

and segments the data to obtain a more detailed shape by 
adding more superquadric primitives into the 
representation. In the third stage, the superquadric 
primitives are relaxed and re-fitted to achieve global 
compatibility, while the corresponding segmentation is 
attained simultaneously. 

3.2.1 Primary segmentation 
 

The coarse segmentation involves a topology-based 
decomposition technique on point sets [23]. The whole 
dataset is first processed by a connectivity test where a 
connectivity graph is built upon the data points. 
Geodesic distances between data points are then 
computed using wavefront-propagation. Computing the 
Morse function based on Geodesic distance, the whole 
dataset is quantised into different levels (see Fig. 1(a)). 

(a) (b) 

Fig. 1 Primary segmentation : (a) Human scan and level-
set curves ; (b) Discrete Reeb graph 

 
The data points in each level are grouped into 

discrete curves based on their connectivity.  These 
discrete curves are linked between adjacent levels if 
there are connecting points between the curves, resulting 
in a discrete Reeb graph (Fig. 1(b)) where the discrete 
curves are represented by nodes. This set of nodes is 
then decomposed into subsets by detecting nodes 
corresponding to human joints, which is achieved by 
analysing singularities in the discrete Reeb graph and 
then applying a heuristic criterion that captures basic 
human typography. The data points contained in the 
different subsets of nodes approximately correspond to 
the 5 primary body parts, i.e., 1 torso (including head) 
and 4 limbs (see Fig. 4(a)).  
 

3.2.2 Secondary segmentation  
 

A primary body part, obtained from the topology-
based segmentation, still consists of several functional 
body parts, which can be extracted using a “fit-and-split” 
algorithm. A single superquadric is first fitted to the 
primary body part, and a consistency measure is then 
computed along z-axis of the superquadric (see Fig. 2). 
The consistency at any z-level is a weighted combination 
of the normalized area difference and the centre location 
difference between the data and the superquadric defined 
as follows: 
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where ξ  represents consistency, sA  dA  denote areas 

and sC  dC  denote the centres of the superquadric slice 

and the data slice respectively, a and b are the semimajor 
and semiminor axes of the superquadric slice (see Fig. 
2), Aw  Cw  are weights for terms representing area 

difference and centre difference. Clearly, if the 
superquadric is fitted well to the data, the value of ξ  
should be small. 

Superquadric slice

Data slice 

Cd

Cs
a

b

 
 

Fig. 2 Consistency between data and superquadric 
 

A primary body part is split based on the detection 
of salient points which lie on a consistency graph 
defined by plotting the consistency function against the 
z-axis distance of the body part superquadric. Salient 
points are detected as zero-crossings of first order and 
second order derivatives of the consistency graph, which 
correspond to salient changes on this plot. Fig. 3 
demonstrates a primary body part (an arm), its fitted 
superquadric and the consistency graph between the data 
and the superquadric. Two salient points are labelled on 
the consistency graph corresponding to the wrist and 
elbow areas on the arm.  
 

Having detected the salient points, the data is split 
at the point that minimizes the fitting error of the 
bisected data (e.g., the salient point corresponding to 
elbow in Fig. 3). This splitting process is applied twice 
(the second split is applied to the data segment produced 
by the first splitting operation that has the larger fitting 
error) to obtain three segments of a primary body part.  
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Fig. 3  Primary body part, fitted superqudric and 
consistency graph 

 
 

3.3 Part refining 

Since the fine segmentation process described in 
Section 3.2.2  is based on local analysis of primary body 
parts, it is difficult to attain global compatibility amongst 
all of the segments used to represent the whole body. We 
have devised a relaxation labelling technique to tackle 
this problem. The underlying idea is to adjust the labels 
of data points associated with potentially corresponding 
superquadrics such that global compatibility is 
improved. First, we assign each possible label a 
probability: 
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Here jx  denotes a data point, iS  represents a 

superquadric primitive, and ),( ij Sxδ  means the radial 

distance between jx  and iS . Such a definition of 

probability satisfies the condition 1):( =�
i

ij SP x , and 

guarantees that the label for each data point has the 
higher probability associated with the closer 
superquadric. We then define a compatibility coefficient 
for each possible labelling of each pair of data points: 
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Here ),( ki SSd  is the Euclidean distance between centres 

of superquadrics iS , kS . Using this definition, we can 

calculate the compatibility support for a possible 
labelling of a data point from all data points: 
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Here jlw  are weights that reflect the relative importance 

of data point pairs in supplying each other a context. We 
simply assign a value of 1.0 to the weights of data points 
that are considered as neighbours ( σ3),( <ljd xx , � is 

the resolution of scan data) and a value of 0.0 otherwise. 
The relaxation labelling progresses iteratively. In each 
iterative step, probabilities of data points associated with 
superquadrics are updated as follows: 
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The above formula assigns a new probability to 
each label by taking into account compatibility support 
from all data points, thereby providing a global 
adjustment mechanism for the labelling. Upon 
termination of the iteration process, each data point is 



assigned with a label that has the highest probability, 
amongst all possible labels, for that data point. The 
iteration length is mainly justified by observation: we 
discovered that the label probabilities exhibit no 
significant change within in a few iteration steps. 
Therefore we chose 3-10 steps as the normal range of 
iterations in the relaxation labelling process. 
                   

4 Experiments  
 

In this section, we first use an example to 
demonstrate the whole body scan segmentation and 
fitting scheme, and then evaluate the quality of 
superquadric human models achieved using a group of 
scan datasets.  

(a) (b) (c) (d)  

Figure 4. An example of segmentation and fitting : (a) 
primary segmentation ; (b) secondary segmentation ; (c) 

relaxation labelling ; (d) Superqudric fitting 

 
Fig. 4 illustrates data output from different stages 

of the scheme. Fig. 4 (a) is the result achieved by the 
primary segmentation, where the whole dataset has been 
clearly segmented into 5 primary parts, although the 
segmentation boundaries are not strictly faithful to those 
found in human anatomy. These primary parts are further 
decomposed, as shown in Fig. 4 (b), where basically 15 
segments of body have been recovered. Because of the 
influence of the primary segmentation, the locations of 
the segments are not adequately aligned to the true body 
parts. The relaxation labelling process has improved the 
segmentation quality, as shown in Fig. 4 (c), by making 
the segments more compatible with each other. The final 
fitting result is displayed in Fig. 4 (d), which has 
captured an explicit “summary” of the main shape of the 
human body as implied in the scan data. 

 

(a) (b)

(c) (d)

(e) (f)

(g) (h)  
Fig. 5 Segmentation and fitting results of different scan 

samples 
 
In order to understand the quality of superquadric 

human model achieved by our proposed segmentation 
and fitting scheme, we processed a group of real scan 
datasets, which were acquired from different types of 
scanner, representing different human bodies in a variety 
of typical postures. In Fig. 5, scan samples (a,b,c,d) were 
acquired from Cyberware body scanners [24], which are 
based on laser scanning technology. The samples 
comprises of two women (a,c) and two men (b,d), who 
were in two different postures, i.e., standing and sitting. 
Scan samples (e,f,g,h) are all men, but in three different 
postures, acquired from Wicks and Wilson body 
scanners, which are different from Cyberware scanners, 
adopting Moiré fringing 3D imaging principles. Despite 
all of the differences (shape, imaging approach, 
resolution and posture) in the samples in Fig. 5, the 
datasets have been segmented reasonably well and 
superquadric human models have been obtained to 
represent principal shape of the bodies. Almost all the 
samples have been decomposed into 15 body parts, 
except for samples (b,e), in which the arms were not 
segmented into upper parts and lower parts, because the 
arms are in straight pose and exhibit no detectable 
salient change in the elbow areas.  
 

Basically the reconstructed superquadric models 
have captured the gross shape of the human bodies as 
judged from their visual appearance. Since ground truth 
knowledge of the human body shapes is not available, 



we are unable to evaluate rigorously how well the 
models represent the body shapes. However, we believe 
that the magnitude of the fitting errors between the data 
points and the models provides a good indicator of the 
quality of the reconstructed models. Table 1 lists four 
statistics (the mean, maximum, minimum values and 
standard deviations) of the fitting errors for all the 
models shown in Fig. 5. The radial distances between the 
data points and the models have been adopted to 
represent fitting errors, as radial distance (Euclidean 
distance along a radius) affords a more intuitive 
interpretation, based on its physical meaning, than the 
algebraic distance used commonly in minimisation (4).  
 
 
Table 1 Fitting errors of superquadric human models in 

Fig. 5 (unit: meter) 

Model mean maximum minimum std 

 (a) 0.0117 0.0622 5.197×10-7 0.0102 

 (b) 0.0101 0.0853 1.620×10-6 0.0090 

 (c) 0.0187 0.1089 1.587×10-7 0.0180 

 (d) 0.0121 0.0621 2.229×10-8 0.0102 

 (e) 0.0116 0.1046 5.990×10-7 0.0101 

 (f) 0.0116 0.0840 3.664×10-7 0.0106 

 (g) 0.0118 0.0850 2.817×10-7 0.0099 

 (h) 0.0115 0.0724 5.603×10-7 0.0095 

  
 

The statistics in Table 1 suggest that superquadrics 
can represent human body shapes reasonably well. The 
average distance between the data point and the fitted 
superquadric human model is of the order of 0.01 
meters. To allow fair comparison, each dataset has been 
normalised to 2 meters high on its longest axis. The 
fitting error standard deviations also remain relatively 
low, implying that we have achieved reasonable fitting 
consistency between the reconstructed superquadric 
models and the corresponding scan data. The error levels 
indicated by the data in Table 1 are tolerable in 
applications for which the coarse shape of the human 
body is sufficient, such as in virtual environments and 
real-time computer games. Moreover, the above 
statistics exhibit no significant change over the data 
samples, despite their considerable differences in 
characteristics (shape, pose, resolution, etc.). This 
observation suggests that the methods adopted in this 
work should be sufficiently stable to support the 
applications cited above. 
 
 

5 Conclusion 
This paper reports a scheme to reconstruct 

analytical human models from human 3D scan data. 
Superquadric primitives are proposed to model human 

shape, which compress the high dimensional human 
shape captured with point-cloud data into the much 
lower dimensional space of superquadric model 
parameters. The compact nature and analytic properties 
exhibited by our representation confer advantages in 
applications such as 3D human shape retrieval, real-time 
computer games, virtual environment, object 
recognition, human body tracking, etc.  Moreover, the 
simple parameterisation of the superquadric model can 
potentially facilitate further analysis of the human shape, 
e.g., body part registration.  Finally, the reconstruction 
scheme itself is fully automatic and able to deal with 
human scan point clouds in arbitrary postures, thus 
offering a prospect of complete machine-interpretation 
of whole-body human shapes in the future.  
 

In addition to proposing the concept of recovering 
an articulated parts-based building superquadric human 
model from 3D scan data, this paper also makes the 
following technical contributions: the part splitting 
algorithm based on a consistency graph is believed to be 
novel, and can be used to segment other cylinder-like 
objects with only slight adaptation of splitting strategy. 
Moreover, the relaxation labelling technique to improve 
compatibility of individual superquadrics is also new in 
the field of superquadric fitting.  
 

Since a displacement map can be attached to single 
superquadric [11], we propose to add the original 
surface details on top of the superquadric human models. 
Moreover, we believe that the superquadric-based 
segmentation and fitting scheme can be extended further 
to allow other articulated objects to be represented and 
reconstructed from 3D scan data.  
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