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Abstract — To deal with some defects in the tradi-
tional information system (IS), such as only implement-
ing the fully correct or certain class labeling, importance
of each attribute or tuple (each example data), some new
concepts such as variable precision rough model (VP-
model), uncertain information system (UILS), have been
suggested by some researchers. However, how to give
some proper certainty and importance for each example
data, and how to classify such an IS are still open prob-
lems. In this paper, we first evaluate every attribute im-
portance using, not a singleton value but, a fuzzy num-
ber (or, suppose the original information system is along
with such fuzzy numbers), due to the fact that the fuzzy
numbers are easily set in comparison with the singleton
ones. Then, based on the IS with the fuzzy numbers,
we give a new definition of rough set. As a result, the
traditional rough set is a special case in our proposal.
Ezxample shows our model is more practical than the tra-
ditional one.
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1 Introduction

The effective use of computers in various realms of
human activities strongly depends on the efficiency of
algorithms implemented in these computers. So far,
many theoretical foundation stones for the algorithm
have been set up, in which the rough set theory [1, 2]
is a powerful tool to extract classification rules from
a database. In general, such a database regarding the
knowledge we are interested in is given in the form of
information system (IS), which actually indicates an
approximation space. In the traditional I.S , as partly
pointed out by some researchers [3, 4, 5], the approach
for rule extraction implements the fully correct or cer-
tain classification rules without considering other fac-
tors such as uncertain class labeling, importance of ex-
amples. The limitations above severely reduce the ap-
plicability of the rough set approach to problems which
are more probabilistic than deterministic in nature. In
order to deal with the defects above and improve the

reality of IS, some new concepts, such as variable pre-
cision rough model (V P-model) [3], uncertain informa-
tion system (UIS) [5], have been suggested. In an UTS,
considering data’s noise tolerance degrees, two classifi-
cation factors, which are corresponding with the posi-
tive region, and the negative region, respectively, must
firstly be set up for whole system, then, the certainty
and importance for each tuple need to be given. How-
ever, when we extract rules based on the UILS, there
are some tough tasks to be encountered. The follow-
ing are some of them. (1) It is difficult to set up some
singleton values for the classification factors and the ev-
ery certainty and importance. For example, you say
the importance factor for a condition contribute set is
0.85, and I may say the one is 0.86. Such a little differ-
ence 0.01 may lead to a completely different classifica-
tion rule. Therefore, a nature way to avoid the problem
above is adopting fuzzy numbers, say “about 0.85” or
“about 0.86”; (2) When the classification and each ex-
ample data’s factors, where no matter the values are sin-
gleton or fuzzy, are involved in the IS, the traditional
rough set model [1] is no longer capable of giving the
Upper/Lower approximation.

In this paper, in order to cover all uncertainties and
noises in a database from every aspect, we first evaluate
each attribute including both of condition and decision
using, not a singleton value but, a fuzzy number (or,
suppose the original information system is along with
such fuzzy numbers), due to the fact that the fuzzy
numbers are easily set in comparison with the single-
ton ones. Then, based on the information system with
the fuzzy weights (numbers), we give a new definition
of fuzzy rough set. As a result, the traditional rough
set is a special case in our proposal. Consequently, an
interesting difference can be shown by applying them to
a same example database.

The remainder of this paper is arranged as follows. Sec-
tion 2 describes some basic definitions in an IS, while the
way of how to extract classification rules is shown with
an example. In Section 3, we first point out what are
problems in the traditional IS, then focus our attention
on full explanation of new rough set model proposed in



this paper. At the same time, the relation between the
traditional rough set model and our model will be made
clear. Also, it gives an example to show the effectiveness
of the proposed rough set model. Finally, the conclusion
in this paper is given in Section 4.

2 Rough Set

The database regarding the experts’ know-how is gen-
erally given in the form of the information system. The
definition of the traditional information system is given
by Pawlak [2].

Definition 1 (IS) An information systems (IS) is an
ordered quadruple

IS =(U,Q,V,p) (1)

where U is the universe which is a non-empty finite
set of objects x; Q is a finite set of attributes q; V =
Uge@Vy, and V, is the domain of attribute q; p is a
mapping function such that p(x,q) € V; for every q € Q
and x € U. Q is composed of two parts: a set of con-
dition attributes (C) and a decision attribute (D), i.e.,
Q=CuUD.

p also is called a decision function. If we introduce func-
tion p, : @ — V such that p.(¢) = p(z,q) for every
g € Qand z € U, p, is called decision rule in IS, and
z is called a label of the decision rule p,.

Let IS = (U,Q,V,p) be an information system, and
let ¢ € Q, z,y € U. If p.(¢) = py(q), then we say
x,y are indistinguishable, in symbols xR,y where R,
is an equivalence relation. Also, objects z,y € U are
indistinguishable with respect to P C Q) in IS, in sym-
bols zRpy, if R,y for every p € P. In particular,
if P = @, z,y are indistinguishable in IS, in symbols
xRy instead of xRgy. Therefore each information sys-
tem IS = (U, Q,V, p) defines uniquely an approximation
space A = (U, R), where R is an equivalence relation
generated by the information system IS. The equiva-
lence relation R partitions U into a family of disjoint
subsets which are called (J-elementary sets. Likewise,
R¢ leads to C-elementary sets, and Rp leads to D-
elementary sets.

Given an arbitrary set X C U, in general it may not be
possible to describe X precisely in A. One may charac-
terize X by a pair lower and upper approximations.

Definition 2 (Rought Set) Let R be an equivalence
relation on a universe U. For any set X C U, the
lower approzimation apr(X) and the upper approzima-
tion apr(X) are defined by as follows:

apr(X) = {zeU|[z]r CX} (2)
Gr(X) = {reU|[enX#0}  (3)

where
[z]r = {y | xRy} (4)

is the equivalence class containing .

The lower approximation apr(X) is the union of ele-
mentary sets which are subsets of X, and the upper
approximation apr(X) is the union of elementary sets
which have a non-empty intersection with X. The set
bnd(X) = apr(X) — apr(X) is called boundary of X in
A. If bnd(X) is empty, then subset X is exactly defin-
able. Note that rough set is a set (pair) of lower and
upper approximation.

An accuracy measure of set X in the approximation
space A = (U, R) is defined as

_ Japr(X))|
|apr(X)]

()

where | - | denotes the cardinality of a set. Clearly, it is
true that 0 < a(X) < 1. Besides, X is called definable
in A if o(X) = 1, and X is called undefinable in A if
a(X) < 1.

Now, let us consider the issue of rule extraction from
an information system. A natural way to extract rules,
or represent experts’ knowledge, is to construct a set of
conditional productions, each of them having the form

IF { set of conditions} THEN { set of decisions}

Such a form can be easily induced by taking the ad-
vantage of rough set. In an approximation space A =
(U, R), regarding a subset X of U, the whole universe
U is partitioned into three regions:

e Positive region pos(X) = apr(X);

o Negative region neg(X) = U — apr(X);

e Boundary region bnd(X) = apr(X) — apr(X)
which lead to the following decision rules:

e Describing pos(X) — positive decision rules;

e Describing neg(X) — negative decision rules;

e Describing bnd(X) — possible decision rules.
Also, the positive decision rules, possible decision rules
are referred to as certain rules, possible rules, respec-
tively. A simple illustration example is shown as follows.

[Example 1] Suppose that there is an information
system IS = (U,Q,V,p), which is a database about
the diagnosis of influenza (Tab.1). In the information
system, U = {1, x2,...,zs} in which each object (ele-
ment) expresses a patient; Q@ = CU D = {t,s,h,l, flu}
in which ¢ denotes body temperature, s sneeze, h
headache, | lumbago, and flu influenza. V; = {0, 1,2}
in which 0 expresses “normal”, 1 “high” and 2 “very
high”. V, = Vi = Vi = Vju = {0,1} in which 0 ex-
presses “no” and 1 “yes”. Also, the mapping function p
is given in the table.

Clearly, IS yields the following elementary sets with re-
spects to the condition attributes C' = {t, s, h,l}:

By ={z1,25}, E»={z2}, E3= {3},
Ey ={x4}, Es={x¢}, FE¢={zr}, Er={xs}
i.e., C-elementary sets = {Ey, Ea, ..., E7}.

Now, let us consider to approximate a subset



Table 1: Influenza data
Q

U C D

t]s[h]l] flu
z1 {1 2]0]0|0 1
zo || 1|10 |1 1
zz3 || 10|11 0
24 O] 1] 11]0 1
z5 21010 1]0 0
e O] 1| 1|1 0
z7 |1 ]1]01]0 0
zg |11 (111 1

X = {1‘1,1’2,1’4,1’8}

which is a set of patients who have influenza. Based on
the concepts defined above, we have,

apr(X) = {z2,74,78}
apr(X) = {x1,25,%2,74,28}
pos(X) = {xa,x4,28}
neg(X) = {zs,xq 27}
bnd(X) = {zi,z5}

therefore, the certain rules follow from pos(X) below:

(1) IF t=1 A s=1 A h=0 A I=1 THEN flu=1;

(2) IF t=0 A s=1 A h=1 A =0 THEN flu=1;

(3) IF t=1 A s=1 A h=1 A I=1 THEN flu=1,
where A denotes “and”. Furthermore, the possible rules
follow from bnd(X) below:

(4) IF t=2 A s=0 A h=0 A I=0 THEN flu=1;

(5) IF t=2 A s=0 A h=0 A =0 THEN flu=0,
where we can see that in rules (3) and (4), though they
have the same condition in IF part, the decisions are
different in THEN part. It means in such a case (con-
dition), you are probably have influenza. The negative
decision rules are obtained by describing neg(X) as fol-
lows:

(6) IF t=1 A s=0 A h=1 A l=1 THEN flu=0;

(7) IF t=0 A s=1 A h=1 A I=1 THEN flu=0;

(8) IF t=1 A s=1 A h=0 A I=0 THEN flu=0.
Form (21), the approximation accuracy a(X) = 3/5 =
0.6. 0

3 Rough Set with Fuzzy Weights

As mentioned previously, we can use the theory of
rough set to extract (classification) rules from an infor-
mation system which leads to an approximation space.
However, such a classification is based on the facts such
as noise-free, importance-identical for each example (or
tuple) and each attribute. Therefore, in this section we
propose an information system with fuzzy weights in or-
der to remove the weaknesses above in the traditional

information system. In this paper, the fuzzy weights
are expressed by fuzzy sets with triangle fuzzy member-
ships, which are referred to as triangle fuzzy numbers
(T.F.N.s) and widely used in the fuzzy-related fields [8].
Thus, at first we introduce the triangle fuzzy numbers.

3.1 T.F.N.s [8]
3.1.1 The four operations

Fig.1 shows the membership function for a T.F.N.,
which can be defined by a triplet (a1, a2, as):

0, Tz < ap
Tou g < < ay
. — az—ai’ —
I'LA(J’.) ag:w , as S T S as (6)
az—az
0, T > as

Define two T.F.N.s A and B by the triplets as A =
(a1, a2, a3) and B = (by, ba, b3). Their addition and sub-
traction operations can be calculated as follows.

A+B =
A-B =

(a1 + by, az + by, az + b3) (7)
((11 — b3, A — b2, as — b].) (8)

Also, in Rt their multiplication and division operations
can approximately calculate by

(a1 * by, az * bz, az x b3) (9)
(a1/bs,as/bs,asz/bl) (10)

Note that (7) and (8) hold in any cases while (9) and
(10) only approximately hold in R*.

isB =
i =

3.1.2 Ordering of T.F.N.s

In this paper, we adopt the criterion called remowal in
order to rank or order two fuzzy sets. Let us consider an
ordinary number k € R, and a fuzzy set A as illustrated
in Fig.2. The left side removal of A with respect to k,
Ri(A,k), is defined as the area bounded by k and the
left side of the fuzzy set A. Similarly, the right side
removal, R, (A, k), is defined. The removal of the fuzzy
set A with respect to k is defined as the mean of R;(A, k)
and R,(A, k):

R(A,k) = Ri(A k) J; R.(A,k)

(11)

Fig.2 shows how the left and right removals computed
from the corresponding areas. The position of k& can be
located anywhere including k£ = 0.

If the origin 0 is conveniently moved to the left, it is pos-
sible in this case that all of fuzzy sets will have positive
removal numbers. Hence, the removal numbers become
positive if k is correctly chosen. The removal numbers
with respect to a given k, therefore, can be taken as a
measure of distances, and can thus be used for ordering
fuzzy sets. The removal number R(A, k) defined in this
criterion, relative to k = 0 is equivalent to an “ordinary
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Figure 1: Triangle fuzzy number

representative” of the fuzzy set. In the case of T.F.N
this ordinary representative is given by

ar + 2as + as

A= 1 (12)

where A = (a1, a2, a3).
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Figure 2: Left and right removals with respect to k

3.2 Fuzzy weights for attributes in C'

Let us pay attention to ps and pg in Tab.l. They
belonged to different elementary sets (E4 and Ej) only
because of different attribute values of [. Since each at-
tribute in C' was considered as same weight (say 1), it
was a natural classification in the traditional I.S based
on values of condition attributes. However, in practice,
each attribute does have different weight in the process
of decision-making, which is corresponding to the value
of attributes in D. In this case, to judge if a patient
catch a cold or not (i.e., flu = 1 or flu = 0), attributes
(body temperature, sneeze, headache and lumbago) are
adopted as some measures. Actually, the most impor-
tant factor (attribute) in this judgement is body tem-
perature, the weakest attribute is lumbago which is just
as a reference to this judgement. Consequently, it is
unnatural to make classification without having differ-
ent weights for all attributes in C' under consideration.
Therefore, it is reasonable to put some fuzzy weights
for the attributes like Tab.2, where 1 denotes the most
important attribute evaluation, and the 0 denotes the

weakest evaluation. Needless to say, such weights are
evaluated based on the knowledge from the experts who
build the database (I.5). In order to take such weights
into account in the process of classification, we give the
following definition referred to as absolute degree of clas-
sification.

Definition 3 (ﬁA) For two objects x;,x; € U, their
absolute degress of classfication (indistinguishableness)
D 4 is defined by as follows.

Da(zi ;) =Y |p(zi,q) — plxs, q)|ig
qgeC

(13)

For example in Tab.2,

Da(zy,25) = |2—1/-1.0+]0—1/-0.9
+]0-0]-08+1]0—1]-0.1
= 20

It means the two tuples (z1,z2) are 2.0 indistinguish-
able, belonging to two different elementary sets. In
the traditional IS, two tuples are indistinguishable with
zero-tolerance if the D4 is greater than zero. However,
it is reasonable to adopt a threshold 34 and consider
that two tuples (z;, z;) belong to a same elementary set
if ﬁA(wi,mj) < 4. For example, setting S4 = 0.2,

Da(zg,z6) = |0—0/-1+|1—1]-09
+]1-1]-08+1]0—-1]-0.1

= 0.1

therefore, tuples (z4,26) belong to a same elementary
set since DA(1'4,1'6) < BA =0.2.

With the fuzzy weights W for attributes in C' and the
concept of D 4, it is possible to consider each attribute’s
importance in a database, and give some flexibility in
the process of classification. Clearly, once the threshold
B4 is given, the D4 for every two tuples in a same ele-
mentary set should be less than or equal to 4.

Table 2: Influenza data with W

Q
U c (We) D
t(1.0) [ 5(0.9) | h (0.8) [ 1(0.1) [ flu

1.

I 2
T2 1
I3 1
T4 0
2

0

1

1

Ts
Te
T7
T

0 0
0 0
0 1
1 1
1 0
0 0
1 1
0 0
1 1
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It should be noted that for the sake of simplicity, all
fuzzy numbers’ operations are performed without mem-
bership functions throughout this paper. Clearly, if we
take T.F.N. like Fig.1 as the membership functions of
the fuzzy weights and use (12), it is easy to transfer the
T.F.N.s into ordinary representatives (numbers), and
order different T.F.N.s.

3.3 Fuzzy weights for attributes in D

In Tab.1, tuples z1, x> have different conditions which
means they have different condition attribute values,
but the decisions (influenza or not) are same. In such di-
agnosis, which condition is easier to lead to flu? Natu-
rally, the difference between them does occur. However,
in the traditional IS as in Tab.1, there is indifference
between the tuples which have same attribute values in
D. Therefore, if there is a stronger causal relationship
between the condition and decision in the case of x1,
the weight will be bigger, say 1; likewise, if the causal
relationship in tb\g case of zo is weaker, the weight will
be smaller, say 0.4. As a result, each decision attribute
q € @ appears with its own fuzzy weight in the IS like
Tab.3. The main purpose of putting the fuzzy weights
Wp is to give a evaluation to each tuple. It means, for
a same decision, there maybe are several tuples which
have either same or different conditions, but considering
their respective situation such as noise, confidence and
so on, they do have different weights.

Table 3: Influenza data with Wp
Q
C D (Wp)
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T3

T4
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3.4 Rough set with fuzzy weights
With the fuzzy weights We, Wp in mind, we give a
new definition.

Definition 4 (ISF) An information system with fuzzy
weights (ISr) is defined as follows:
ISp = (U:C;D;V>P;V~VC:WD) (14)

where U is the universe which is a non-empty finite set
of objects x; C is a finite condition set of attributes; D

is a finite decision set of attributes; V = UgzecupVy,
and V, is the domain of attribute q; p is a mapping
function such that p.(q) € V, for every ¢ € C U D
and z € U; We = UgecWy, and Wy is a fuzzy num-
ber defined by membership function pg, — [0,1], which
is the importance evaluation of the attribute q € C;
Wp = Upeys, and W, is a fuzzy number defined by
membership function ug, — [0,1], which assigns each
tuple an importance (weight) factor to represents how
important (weighty) is for the corresponding decision.

The images of IS and ISy are depicted in Fig.3 and
Fig4. In the ISy (Fig.4), each object has different
weight which is imaged by its size of circle, whereas each
object has same size of circle in traditional IS (Fig.3).
At this stage, the problem left to us is how to give the

Figure 3: Image of the traditional 1.5

rough set in ISp. Let E, X be a non-empty elemen-
tary set, and a non-empty subset in the approximation
space, respectively. First, similarly in [3], we define a
concept referred to as relative degree of classification.

Definition 5 (Dg) For an elementaty set E, its rela-
tive degree with respect to a set X is defined by as fol-
lows.
s W,
DR(E,X):E%%; I=ENnX (15)
ZIEE We

where |E| < |X| and | - | denotes the cardinallity.

Fig.5 shows the image of the concept of Dp. Clearly,
0 < Dg <1, and 1 means E is completely included in
X, while 0 means that E has no intersection with X.

Considering the system situation such as admissible
level of misclassification, noise, and approximation pre-
cision, one can set up two thresholds 3p, /3y, which
are called positive threshold, negative threshold, respec-
tively. We say that E is included in X, if Dg(E, X) >
Bp, and E is connected nothing with X, if Dr(E,X) <
By. Based on Dp in (15), the lower approximation,
and upper approximation of a subset X with respect to
thresholds Bp and By, in symbols aprs (X), aprz,, (X)
respectively, can be given.
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Figure 4: Image of the ISp

Figure 5: E, X, and their intersection

Definition 6 (Rought Set with Fuzzy Weights)
Let R be an equivalence relation on a universe U. For
any set X C U, the lower approxzimation apr(X) and
the upper approzimation apr(X) with two thresholds
Bp, B, are defined by as follows:

aprs, (X) =POS;,(X) (16)
apr;, (X) = U - NEG;, (X) (17)

where,
POS;,(X) = | J{E € RS | Dr(E,X) > Bp} (18)

NEG; (X)=|J{E€R: | Dr(E,X) < fn} (19)

and R}, = {E, E», ..., En} is the C-elementary sets.

Similarly, the boundary region BNDj, 5 (X) of X is
composed of those elementary sets, which are neither
in the positive region POSj;_ (X), nor negative region
NEG; (X) of X,

BND;, ;. (X)=|J{E € Ry | Bn < Dr(E,X) < fp,}

(20)
In this way, the accuracy measure of set X in the ap-
proximation space A = (U, R) is given by

~ erﬂé (X) Wy
(X)) = e (21)

EweWBN (x) Wz

The difference between the two rough sets in IS and
ISF can be shown in Figs.6 and 7. Let us pay attention
to the boundary regions. Compared the one in Fig.6,

its counterpart is greatly reduced in Fig.7, where the
elementary sets with arrows outward to subset X go to
the negative region while the others with arrows inward
to X go to the positive region.

U

Positive Region ﬁﬁ;ﬂ% M Negative Region

Figure 6: The three regions in IS

U
& ”
= b
X
Y\ LW
I's u

Figure 7: The three regions in ISy

It should be noted that the .S is a special case of the
1Sp, as well as rough sets. Namely,

ISZ (U7C7D7V7p7WC7WD) (22)
where, W¢o = Ujecw, with wy, = 1, Wp = Uzepw,
with w, = 1. In other words, in the traditional IS,
all tuples (objects) and all attributes have equal eval-
uations (weights). Besides, positive region POS(X),

and negative region NEG(X) are the special cases of
POS;, (X), and NEG 3, (X), respectively,

POS(X) = POS;(X)

=|J{E € R: | Dr(E,X) =1} (23)
NEG(X) = NEGy(X)
=|J{E € R; | Dr(E, X) =0} (24)
where,
Da(B,X) = 221 [ _pax  (25)

ZwEE We



In what follows, we apply the proposed rough set with
fuzzy weights to the same date uesed in example 1 ex-
cept for the fuzzy weights W¢ and Wp (Tab.4).
[Example 2] Give the classification of Tab.4 with
thresholds 3, = 0.2 ,Bp = 0.8 8, and By = 0.2.
Without the consideration of fuzzy weights W¢, there
are 7 elementary sets as shown in example 1. How-
ever, by using the ADC with threshold 8. = 0.2, we can
combine E, and FEg, F; and E5 due to_tl the facts that

DR(02,07) DR(C4,06) =01< B. = 0.2 2, and finally
get 5 elementary sets as follows.
Ey ={z1,25}, By ={my,2r}, Es={xs},
By ={zs,z6}, FEs5={ws}

Regarding the subset X = {z1,z2, 24,25} to be ap-
proximated, elementary sets in the boundary region are
E,,E;, and E4 from the viewpoint of the traditional
rough set. However, for example, since the fact that
Dgr(F),X) = 09/11 = 0.81 > Bp, E; should be
shifted into the positive region. In the same way, Fs
is moved out to the negative region due to the fact that
ﬁR(E4, X) < Bn. Consequently, we have

aprs<(X) = {1, 25, 25}

apry~(X) = {71, 22,75, 77, 75}

posz<(X) = {71, 25,25} (26)
negﬁ(X) = {1‘3, T4, xﬁ} (27)
bndﬁ‘é, 55(X) = {22, 27} (28)

By the same manner as in example 1, we can get 3
positive rules, 2 possible rule, and 3 negative rules by
describing the three regions: positive, boundary, and
negative regions, respectively. Clearly, in comparison
with rules (1)~(8), the interesting thing is that although
the cardinalities of positive, negative, and boundary sets
are same, there contents of the three regions are quite
different. For example, the contents of the boundary

Table 4: Influenza data with fuzzy weights

Q
U C (We) D (Wp)
(1.0) [ 5 (0.9) [ (0.8) [ 1(0.1) flu
T 2 0 0 0 1 (0.9)
Ty 1 1 0 1 1(0.9)
T3 1 0 1 1 0 (0.9)
T4 0 1 1 0 1(0.2)
s 2 0 0 0 0 (0.2)
g 0 1 1 1 0 (1.0)
7 1 1 0 0 0 (0.5)
s 1 1 1 1 1 (1.0)

set are x; and x5 in example 1 while they are x5 and 27
in example 2. Compared them, it clear that the latter
reflects more the realities of the database with fuzzy
weights than the former.

4 Conclusion

In this paper, in order to cover the different impor-
tance of each attribute as well as some uncertainties and
noises in a database we introduced an information sys-
tem with fuzzy weights (ISp). Also, a new concept of
rough set is proposed in the context of ISp. From the
differences of rules gotten in I'F and I.Sr based on the
same database in the two examples, we can see the latter
is more effectively reflects the realities of a database.
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