
Automatic Creation of Functional Sub-Networks Using
Genetic Algorithms

Paper id 1-AC05-5

Abstract - Research has shown a strong
correlation between the topology and functional
capability of neural networks, though difficulties
encountered in traditional neural network design
and training increase in relation to the size and
complexity of the network. Constructing a neural
network topology through the integration of
modularized, functional sub-networks has been
shown to provide a reduction in overall
topological complexity and computational
requirements. Furthermore, evolutionary
computing based optimization techniques may be
used to overcome traditional design difficulties.
The research presented in this paper outlines a
modular neural network approach for the
approximation of a Mealy machine example of a
sequential logic circuit. The use of a genetic
algorithm for the automatic generation of an
optimal set of trained functional sub-networks is
described. Results concur with the use of
evolutionary computing techniques as a method
for overcoming traditional neural network design
issues and the use of modularization for the
reduction of task complexity.

Keywords: Genetic algorithms, modular neural
networks, Mealy machines, evolutionary
computation.

1 Introduction

 The topology of an artificial neural network
(NN), comprising the network architecture,
connectivity between neurons, and neuron model
parameters, determines the NN’s information
processing ability. A corresponding operational
performance is often dependent on the learning
algorithm used to encode the features of a problem
across the network’s connection weights [13], [22],
[27]. As the number of features encoded by a NN
increases, a subsequent increase in both NN
complexity and computational requirement occurs.
However constructing a NN architecture through
the integration of modularized, independently
trained, functional sub-networks (subnets) has been
shown to provide a reduction in overall topological
complexity while enhancing the information
processing capability and scalability [2], [5], [16].
In the design and construction of modular and non-
modular NNs, multi-layer feed-forward network

topologies which make use of gradient descent
based learning algorithms prove to be one of the
most popular implementation strategies for
practical NNs [2], [20]. Typically, topological
features are predetermined during the design stage,
using the time consuming method of trial and error
which may fail to produce an optimal solution for a
given problem [22]. The efficiency of gradient
descent based learning algorithms is dependent on
the sensitivity of the network and algorithmic
parameters used, such as learning rate, momentum
and acceleration terms, with time taken to train a
NN increasing exponentially with the number of
connection weights [16], [20]. Optimization
techniques from evolutionary computing (EC) may
be used to address many of the difficulties
encountered in the design and implementation of
feed-forward NNs [18].
 The research presented in this paper attempts
to use an EC technique, e.g. genetic algorithms
(GAs), in collaboration with NNs for the automatic
generation of functional subnets used in a modular
NN based approach to complex function
approximation. Using a Mealy machine example of
the sequential logic circuit for a 3-bit binary
counter, an initial objective of task decomposition
for subnet selection may be inferred from the
implicit decomposition of the sequential logic
circuit into logic sub-structures. The objectives of
subnet architecture design and subnet training will
be achieved through the utilization of a GA.
Through the sequential operation of the evolved
subnets, the objective of complex function
approximation will be realized.
 The organization of the paper consists of a
brief introduction to the topics of modular and
evolutionary approaches to the design and
construction of NNs, followed by an overview of
the GA implementation, incorporating a custom
crossover operator. Details of the Mealy machine
example will then be outlined. This is followed by
a description of the subnet organization and
implementation for the chosen example. Finally,
the results obtained from the GA will be presented.

2 Modular Neural Networks

 A modular neural network (MNN) represents
a class of NN models whose creation was

motivated by a practical need to overcome the
limitations inherent in traditional, non-modular
NNs, thus providing a variety of architectures and
techniques for modularization of topology and
learning, plus multi-module integration [1-3], [5],
[6], [8], [9], [11], [12], [19], [21]. Through the
modularization of an NN topology, a goal task is
decomposed into a set of sub-tasks, each learned
independently by a subnet, with an aim to reducing
high coupling and catastrophic interference
incurred during learning. Similarly, the
modularization of learning reduces the
dimensionality of the set of training patterns for
individual subnets, thus improving convergence
speed and reducing the computational cost of
learning [2]. Methods used for the decomposition
of both task and training data include the use of
techniques such as Adaptive Resonance Theory
and Self Organizing Map networks [1], [2]. A
variety of MNN models exist, two of which are
illustrated in Figure 1 [2].

Figure 1. Modular NN topologies

 MNN’s composed of mixtures of expert
networks use competition between the expert
networks in order to learn and classify training data
[2], [11], [12]. By contrast, cooperative multi-
module integration, as used by ensemble based and
cooperative MNNs, typically make use of voting
schemes to determine the final output from groups
of subnets [1-3]. Other methods of multi-module
integration include combining the average and
weighted average outputs, and the use of the
absolute maximum output of all subnets for
decoupled MNNs [1], [2], [6], [9], [19]. The
modular approach used by the research presented
herein is based on the decoupled subnet model.

Each subnet will approximate a specific sub-task;
the network training error calculated using the
error obtained over all subnets per training pattern,
and the overall network output obtained through
the sequential operation of each subnet.

3 Evolutionary Neural Networks

 The collaborative combination of EC and NN
techniques may be used to provide solutions for
the problems inherent in the design and
implementation of an optimal NN architecture and
corresponding set of connection weights [18]. By
considering the problem of NN topology design as
a search problem in the space of all possible
topologies, a GA may be used to search the space
for an optimal solution. Similarly, the
disadvantages associated with gradient descent
based learning, such as the requirement for a
differentiable error surface, and the search
becoming trapped in local minima, may be
overcome using a GA’s ability to cope with large,
multi-modal, complex search spaces without
requiring gradient information for the search [16],
[20], [27]. Research has shown that using a GA for
the construction of NN architecture or determining
NN connection weights provides an efficient and
effective method of implementation for both large
and small scale problem domains, often
outperforming traditional design methods and
learning algorithms [4], [15], [20], [26], [28].
Architecture and connection weights may be
evolved simultaneously through the use of a
compound encoding within a single chromosome
representation manipulated by the GA.
Incorporating such duality in the evolutionary
process may help overcome the problems of noisy
fitness evaluation [28] and competing conventions
[18], which can arise from the evolution of NN
architecture alone. Care must be taken in the
choice of encoding scheme used as the optimal NN
will be obtained from the performance surface
encoded by the GA’s representation scheme [28].

4 Genetic Algorithms

 As one of the most recognized forms of
evolutionary algorithms, a GA is the computational
simulation of evolutionary processes. Potential
solutions to a problem are encoded as genotypes,
represented through the use of chromosome strings
and manipulated using a set of genetic operators
for chromosome selection, recombination
(crossover) and mutation [10]. Binary based
chromosome representations provide a convenient
and simple representation scheme allowing the
application of a standard set genetic operators
however suffer from limited precision. By contrast,

(a) Ensemble

Subnet1 Subnet. . .

vote

(b) Decoupled subnets

Subnet1 Subnetn . . .

|max|

real-valued chromosome representations may offer
increased precision and reduced string length
however require the implementation of custom
genetic operators [27], [28]. The GA manipulates a
population of chromosomes over successive
generations, decoding each genotype into
phenotype form for evaluation of the potential
solution’s fitness. Characteristics and behaviors
associated with the fittest strings are copied into
the next generation, thus enabling the search to
proceed toward an optimal solution, and imbuing
the GA with the ability to “learn” the
characteristics of the optimal solution [17]. A
general description of the GA may be found in [7],
[10], [17], [24], [25].
 The GA used for the automatic creation of a
set of functional subnets, as presented in this paper,
will simultaneously search for the a set of optimal
subnet architectures, corresponding connection
weights and neuron model parameters by encoding
these as genotypes within a single, real-valued
chromosome string. The organization of the
chromosome string used to encode a maximum of
n subnets is illustrated in Figure 2, where hn
represent the number of hidden neurons in the nth
subnet, nwji and nwkj represent the connection
weights between the input and hidden layer
neurons, and the hidden and output layer neurons
for the nth subnet respectively, and nbj and nbk
represent the hidden and output neuron biases in
the nth subnet.

{ }k
n

j
n

kj
n

ji
n

nkjkjji bbwwhbbwwh ,,,,,,,,,, 1111
1

Figure 2. Organisation of chromosome for n

subnets

If i, j, k represent the number of inputs, hidden
neurons, and outputs, each subnet will require the
following number of genes within each
chromosome string:

 ()kjkjji ++++)*()*(1 (1)

In the initial population of chromosomes, random
integers are used to specify the number of hidden
neurons, while random real numbers are used for
the specification of connection weights and bias
values. For each generation all potential subnets
from each chromosome are independently
evaluated using a set of training patterns. As input
patterns are applied to a set of subnets, the sum of
the squared error between a target output pattern
and the actual output for each subnet is calculated.
The summation of the errors over the set of training
patterns is determined and subsequently used as a
chromosome’s objective value. The calculation for
the objective value for a single chromosome (Objc)

is shown in equation (2). The corresponding
calculation for the relative fitness (Fc) of a single
chromosome is given in equation (3).

 ()∑∑
= =

−=
P

j

n

i

j
i

j
ic YYObj

1 1

2ˆ (2)

where
 iY = desired target output pattern,

 iŶ = estimated output pattern,
 n = 1, 2,…, no subnets,
 P = 1, 2,…, no input patterns,

∑
=

= N

i
i

i
c

f

f
F

1

 (3)

where ,1
Obj

f i = N = 1, 2,…, population size.

 After the evaluation of all chromosomes in the
population, the relative fitness values are used by
the GA’s selection operator. The unbiased selection
operator, Roulette Wheel Selection [25], is used to
select chromosomes from the current population
for inclusion in a mating pool. Pairs of parent
chromosomes are randomly selected from the
mating pool for recombination, according to a
crossover rate, Pc, which determines the probability
that a chromosome will be used for crossover. The
custom recombination operator, termed
‘isomorphic crossover’, has been implemented to
allow crossover to occur between two parent
chromosomes consisting of isomorphic subnets
represented by real-valued chromosome sub-
strings. During isomorphic crossover the topologies
of all subnets within the parent chromosomes are
examined to determine if crossover is possible. If
one or more topologies from both parent
chromosomes match, single point crossover is
performed on the respective chromosome sub-
strings in order to create two new child
chromosomes, as depicted in Figure 3.

Figure 3. Isomorphic crossover of subnets

Child 1 AAAAAABBBBXXXXCCCC

Child 2 XXXXBBBBYYZZZZZZZZZZZZ

AAAAAABBBBBBBBCCCC

Crossover point (Subnet2, Pos = 4)

Parent 1

XXXXXXXXYYZZZZZZZZZZZZ

Crossover point (Subnet1, Pos = 4)

Parent 2

 If a single topology from one parent matches
with multiple topologies from the second parent, a
subnet is randomly chosen from the second parent
for crossover. If all subnet topologies from both
parent chromosomes match, then single point
crossover is performed over the entire length of the
parent chromosome strings. When no topologies
match, non-isomorphic crossover is applied,
performing random mutation on gene values within
both parent chromosomes. Chromosome strings
that have been selected from the mating pool for
recombination are always added to the next
generation of the population, either as direct
copies, if no recombination occurs, or as child
chromosomes. Once a new population of
chromosomes has been generated the GA’s
mutation operator is applied. Mutation is performed
on randomly selected gene values within the entire
population according to a mutation rate, Pm, which
determines the probability that mutation will occur
on an individual gene. Genes selected for mutation
have a value in the interval [0,1] randomly added
or subtracted. Pm is set at a higher rate for non-
isomorphic crossover than for the standard
mutation operator to ensure at least one of the
genes in a chromosome selected for recombination
will be modified. Using real-valued chromosomes
necessitates the use of a single gene to encode the
number of hidden neurons in each subnet. As
isomorphic crossover only crosses genes within
individual subnets, the topology of a subnet may
only be modified through mutation, either as a
result of non-isomorphic crossover or the mutation
operator. The cycle of evaluation, selection,
recombination and mutation repeats until a
maximum number of generations of chromosomes
have been evolved. Figure 4 illustrates cycle of
processing performed by the collaborative GA-NN
system.

Genetic Algorithm

Subnet topologies

Input

Pattern

Target
Pattern

Perform fitness
evaluation Fc

Objn

Subnet parameters

MNN
(Collection of n

Subnets)

Figure 4. Block diagram of GA-NN system

5 Finite State Machines & Mealy Machine
Example

 Finite State Machines (FSM) embody a class
of abstract machine that represent the behaviour of
sequential logic circuits. Characterised by a set of
inputs, outputs and internal states, a “memory” of
previous inputs is retained through the use of a
FSM’s internal states. One type of FSM known as
a Mealy machine, due to the outputs being
dependent on the input and current state, can be
defined by the ordered sextuple M = (Q,I,O,δ,β,q0),
where Q is a finite set of internal states, I is a finite
set of inputs, O is a finite set of outputs, δ is the
transition function δ : Q x I → Q, β is the output
function β : Q x I → O, and q0 ∈ Q is the initial
state [14], [23].
 Sequential circuits consist of a number of
combinational logic circuits connected in a
feedback loop with state memory circuitry. Binary
values stored by state memory circuits, typically
using a flip-flop for the storage of two distinct
states, define the state of the sequential circuit at a
given time t. Updating the state of the circuit at
time t+1 requires a function of the inputs and the
state of the circuit at time t. Synchronisation of the
flip-flops is achieved through the use of a clock
pulse, upon receipt of which the state memory is
updated [14], [23]. A binary counter circuit iterates
through a predefined sequence of binary states in
response to a series of input pulses, known as
“count pulses”. When 3-bits are used, the binary
count from 000→111 is repeated, each bit of the
counter corresponding to the state of a flip-flop at a
given time t. Figure 5 demonstrates the sequential
logic circuit required for a 3-bit binary counter in
which a single T flip-flop is used to maintain the
state for each bit. The outputs from each flip-flop,
denoted C0, C1, C2, form the count sequence [14].

Figure 5. 3-bit binary counter circuit diagram

 Labeling the flip-flops, TC0, TC1, and TC2
respectively, the current state of the flip-flops at
time t, the state of the flip-flops at time t+1 and the
inputs required to affect the state transition are
listed in Table 1. The count sequence follows the

C0C1 C2

T

Q

T

Q

T

Q

1 count
pulse

sequence of states from Q(t) to Q(t+1) for each
flip-flop in response to a value of 1 being received
by the first flip-flop TC0 [14].

Table 1. State transitions for 3-bit binary counter

Q(t) Q(t+1) Input sequence

C2 C1 C0
C
2

C
1

C
0

TC
2

TC
1

TC
0

0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

6 Subnet Implementation

 The logic circuit of Figure 5 may be
approximated through the use of a MNN, as
illustrated in Figure 6. The functionality associated
with individual automaton (flip flops TC0, TC1,
and TC2) are represented by the subnets, NN TC0,
NN TC1, and NN TC2. For each subnet, input and
output layer neurons are determined by the inputs
and outputs required for each flip flop, with the use
of an additional input to each subnet corresponding
to the current state, Q(t), of the respective flip flop.

Figure 6. Overall MNN Structure

 During subnet training, errors obtained from
the outputs of the individual subnets are combined
to produce an overall error value, thus retaining the
coupling between individual subnets. Once an
optimal set of subnets has been evolved, the
sequential operation of the three subnets enables
the construction of an overall MNN. As illustrated
in Figure 6, the input to the first subnet consists of
an input sequence, coupled with the current state of
the subnet. For the second and third subnets, the
input sequences used are determined from the
outputs of the previous subnets. The three bit
counter output is formed by the concatenating the
output from the individual subnets.

7 Experimentation & Results

 The MNN developed in Section 6, Figure 6,
for the 3-bit binary counter was implemented
through the evolution of the chromosome structure
presented in Section 4, Figure 2. Each chromosome
manipulated by the GA encoded the genotype
representations for the three subnets shown in
Figure 6. The algorithm for the collaborative GA-
NN system, as depicted in Section 4, Figure 4, was
repeatedly run for 200 generations, each containing
an initial population size of 20 chromosomes, with
the eventual production of a set of subnets capable
of approximating the desired output patterns from
the set of target input patterns. Running the subnets
sequentially resulted in the concatenated output
displaying the expected count sequence. The
choice of training patterns provided an initial
challenge with regard to specifying a set of patterns
which would allow for the desired output from
each of the subnets, while enabling the GA to
successfully converge. One caveat of the chosen set
of training patterns is that each subnet requires the
current state of the flip flop to be approximated,
Q(t), to be input along with the corresponding input
pattern. When using this combination of inputs to
each subnet, only a small number of training
patterns were required to affect the correct
operation of the evolved subnets. Figure 7
illustrates the average and minimum objective
values obtained by the GA over 200 generations.

Figure 7. Objective value over 200 generations

 As illustrated in Figure 7, convergence occurs
rapidly within the first 20 generations, most likely
due to the Roulette Wheel Selection algorithm
used, followed by a period of oscillation with a
slower convergence rate. Generations 140 to 200
provide a reduction in oscillations, resulting in
stability of the minimum and average objective
values towards the final generation. The minimum
objective value, and subsequent chromosome used
for further testing was obtained from generation

TC0

Overall MNN

NN TC0

NN TC1

C0

C1

Inputs Outputs

NN TC2 C2

TC1 = C0(t)

TC2 = C1(t)

Q0(t)

Q2(t)

Q1(t)

198. Figure 8 illustrates the corresponding average
and maximum raw fitness values obtained.

Figure 8. Raw fitness value over 200 generations

 In correspondence with the reduction in
oscillation and stability of the objective value, both
average and maximum raw fitness values rapidly
increase in size though oscillate towards the final
generations. From the graph of the maximum raw
fitness value, it can be seen that the chosen
chromosome at generation 198 corresponds to the
maximum raw fitness value obtained. The three
subnets obtained from the chromosome had 6, 4,
and 5 hidden neurons respectively.

8 Conclusion

 In this research, the 3-bit binary counter, as a
representative Mealy machine, has been
decomposed into a set of simple automaton, each
approximated by a small feed-forward neural
network. The collaborative combination of GAs
and NNs has been used to overcome the issues
associated with traditional NN design, enabling the
automatic creation of an optimal set of subnets,
which successfully approximate the desired output
of the counter when operated in a sequential
manner. Using a modular approach to
decomposition of the overall functionality has
allowed for a small set of training patterns to be
used, thus reducing computation requirements and
convergence speeds for the individual subnets. The
success of the approach for the chosen example
implies that any finite state machine may be
approximated in a similar fashion. Further research
into the combination of GA and MNN approaches
to complex function approximation from fields
other than digital logic design would further
strengthen the current research.

References

[1] G. Auda, & M. Kamel, “CMNN: Cooperative
Modular Neural Networks”, Neurocomputing,
Vol 20, pp. 189-207, 1998.

[2] G. Auda, & M. Kamel, “Modular Neural
Networks: A Survey”, International Journal of
Neural Systems, Vol 9, No. 2, pp. 129-151,
1999.

[3] G. Auda, M. Kamel, & H. Raafat, “Voting
Schemes for Cooperative Neural Network
Classifiers”, IEEE International Conference on
Neural Networks, Vol 3, pp. 1240-1243, 1995.

[4] D. Dasgupta, & D. R. McGregor, “Designing
Application-Specific Neural Networks using
the Structured Genetic Algorithm”,
International Workshop on Combinations of
Genetic Algorithms and Neural Networks,
Baltimore, pp. 87-96, June 1992.

[5] H. M. El-Bakry, “Modular Neural Networks
for Solving High Complexity Problems”,
Proceedings of the International Joint
Conference on Neural Networks, Vol 3, pp.
2202-2207, 2003.

[6] N. Garcia-Pedrajas, C. Hervas-Martinez, & D.
Ortiz-Boyer, “Cooperative Coevolution of
Artificial Neural Network Ensembles for
Pattern Classification”, IEEE Transactions on
Evolutionary Computation, Vol 9, No. 3, pp.
271-302, 2005.

[7] D. E. Goldberg, Genetic algorithms in search,
optimization, and machine learning, Addison-
Wesley, Reading, 1989.

[8] S. U. Guan, & P. Li, “Feature Selection for
Modular Neural Network Classifiers”, Journal
of Intelligent Systems, Vol 12, No. 3, pp. 173-
199, 2002.

[9] S. Hashem, B. Schmeiser, & Y. Yih, “Optimal
Linear Combinations of Neural Networks: An
Overview”, IEEE International Conference on
Neural Networks, Vol 3, pp. 1507-1512, 1994.

[10] J. H. Holland, Adaptation in natural and
artificial systems: an introductory analysis
with applications to biology, control and
artificial intelligence, MIT Press, Cambridge,
1992.

[11] R. A. Jacobs, M. I. Jordan, & A. G. Barto,
“Task decomposition through competition in a
modular connectionist architecture: the what
and where vision tasks”, Cognitive Science,
Vol 15, No. 2, pp. 219-250, 1991.

[12] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, & G.
E. Hinton, “Adaptive mixtures of local
experts”, Neural Computation, Vol 3, No. 1,
pp. 79-87, 1991.

[13] N. Jiang, Z. Zhao, & L. Ren, “Design of
structural modular neural networks with
genetic algorithm”, Advances in Engineering
Software, Vol 34, pp. 17-24, 2003.

[14] M. M. Mano, Digital logic and computer
design, Prentice-Hall, Englewood Cliffs, 1979.

[15] D. J. Montana, & L. Davis, “Training
Feedforward Neural Networks Using Genetic
Algorithms”, Proceedings of 11th International
Joint Conference on Artificial Intelligence, Vol
1, pp. 762-767, 1989.

[16] H. Muhlenbein, “Limitations of multi-layer
perceptron networks – steps towards genetic
neural networks”, Parallel Computing, Vol 14,
pp. 249-260, 1990.

[17] H. Muhlenbein, & J. Kindermann, “The
Dynamics of Evolution and Learning”,
Connectionism In Perspective, pp. 173-197,
1989.

[18] J. D. Schaffer, D. Whitley, & L. J. Eshelman,
“Combinations of Genetic Algorithms and
Neural Networks: A Survey of the State of the
Art”, International Workshop on Combinations
of Genetic Algorithms and Neural Networks,
Baltimore, pp. 1-37, June 1992.

[19] A. J. Sharkey, “On Combining Artificial
Neural Nets”, Connection Science, Vol 8, No.
3 & 4, pp. 299-313, 1996.

[20] M. N. H. Siddique, & M. O. Tokhi, “Training
Neural Networks: Backpropagation vs Genetic
Algorithms”, Proceedings of the International
Joint Conference on Neural Networks, Vol 4,
pp. 2673-2678, 2001.

[21] P. Tino, & J. Sajda, “Learning and Extracting
Initial Mealy Automata with a Modular Neural
Network Model”, Neural Computation, Vol 7,
No. 4, pp. 822-844, 1995.

[22] E. Vonk, L. C. Jain, & R. P. Johnson,
Automatic Generation of Neural Network
Architecture Using Evolutionary Computation,
World Scientific Publishing, Singapore, 1997.

[23] J. F. Wakerly, Digital Design: Principles &
Practices, Prentice-Hall International, New
York, 2000.

[24] P. D. Wasserman, Advanced methods in
neural computing, Van Nostrand Reinhold,
New York, 1993.

[25] D. Whitley, “An overview of evolutionary
algorithms: practical issues and common
pitfalls”, Information and Software

Technology, Vol 43, No. 14, pp. 817-831,
2001.

[26] D. Whitley, T. Starkweather, & C. Bogart,
“Genetic algorithms and neural networks:
optimizing connections and connectivity”,
Parallel Computing, Vol 14, pp. 347-361,
1990.

[27] X. Yao, “Evolutionary Artificial Neural
Networks”, International Journal of Neural
Systems, Vol 4, No. 3, pp. 203-222, 1993.

[28] X. Yao, “Evolving Artificial Neural
Networks”, Proceeding of the IEEE, Vol 87,
No. 9, pp. 1423-1447, 1999.

