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Abstract - Research has shown a strong 
correlation between the topology and functional 
capability of neural networks, though difficulties 
encountered in traditional neural network design 
and training increase in relation to the size and 
complexity of the network. Constructing a neural 
network topology through the integration of 
modularized, functional sub-networks has been 
shown to provide a reduction in overall 
topological complexity and computational 
requirements. Furthermore, evolutionary 
computing based optimization techniques may be 
used to overcome traditional design difficulties. 
The research presented in this paper outlines a 
modular neural network approach for the 
approximation of a Mealy machine example of a 
sequential logic circuit. The use of a genetic 
algorithm for the automatic generation of an 
optimal set of trained functional sub-networks is 
described. Results concur with the use of 
evolutionary computing techniques as a method 
for overcoming traditional neural network design 
issues and the use of modularization for the 
reduction of task complexity.  

Keywords: Genetic algorithms, modular neural 
networks, Mealy machines, evolutionary 
computation. 

1  Introduction 

 The topology of an artificial neural network 
(NN), comprising the network architecture, 
connectivity between neurons, and neuron model 
parameters, determines the NN’s information 
processing ability. A corresponding operational 
performance is often dependent on the learning 
algorithm used to encode the features of a problem 
across the network’s connection weights [13], [22], 
[27]. As the number of features encoded by a NN 
increases, a subsequent increase in both NN 
complexity and computational requirement occurs. 
However constructing a NN architecture through 
the integration of modularized, independently 
trained, functional sub-networks (subnets) has been 
shown to provide a reduction in overall topological 
complexity while enhancing the information 
processing capability and scalability [2], [5], [16]. 
In the design and construction of modular and non-
modular NNs, multi-layer feed-forward network 

topologies which make use of gradient descent 
based learning algorithms prove to be one of the 
most popular implementation strategies for 
practical NNs [2], [20]. Typically, topological 
features are predetermined during the design stage, 
using the time consuming method of trial and error 
which may fail to produce an optimal solution for a 
given problem [22]. The efficiency of gradient 
descent based learning algorithms is dependent on 
the sensitivity of the network and algorithmic 
parameters used, such as learning rate, momentum 
and acceleration terms, with time taken to train a 
NN increasing exponentially with the number of 
connection weights [16], [20]. Optimization 
techniques from evolutionary computing (EC) may 
be used to address many of the difficulties 
encountered in the design and implementation of 
feed-forward NNs [18].  
 The research presented in this paper attempts 
to use an EC technique, e.g. genetic algorithms 
(GAs), in collaboration with NNs for the automatic 
generation of functional subnets used in a modular 
NN based approach to complex function 
approximation. Using a Mealy machine example of 
the sequential logic circuit for a 3-bit binary 
counter, an initial objective of task decomposition 
for subnet selection may be inferred from the 
implicit decomposition of the sequential logic 
circuit into logic sub-structures. The objectives of 
subnet architecture design and subnet training will 
be achieved through the utilization of a GA. 
Through the sequential operation of the evolved 
subnets, the objective of complex function 
approximation will be realized.  
 The organization of the paper consists of a 
brief introduction to the topics of modular and 
evolutionary approaches to the design and 
construction of NNs, followed by an overview of 
the GA implementation, incorporating a custom 
crossover operator. Details of the Mealy machine 
example will then be outlined. This is followed by 
a description of the subnet organization and 
implementation for the chosen example. Finally, 
the results obtained from the GA will be presented.        

2 Modular Neural Networks 

 A modular neural network (MNN) represents 
a class of NN models whose creation was 



motivated by a practical need to overcome the 
limitations inherent in traditional, non-modular 
NNs, thus providing a variety of architectures and 
techniques for modularization of topology and 
learning, plus multi-module integration [1-3], [5], 
[6], [8], [9], [11], [12], [19], [21]. Through the 
modularization of an NN topology, a goal task is 
decomposed into a set of sub-tasks, each learned 
independently by a subnet, with an aim to reducing 
high coupling and catastrophic interference 
incurred during learning. Similarly, the 
modularization of learning reduces the 
dimensionality of the set of training patterns for 
individual subnets, thus improving convergence 
speed and reducing the computational cost of 
learning [2]. Methods used for the decomposition 
of both task and training data include the use of 
techniques such as Adaptive Resonance Theory 
and Self Organizing Map networks [1], [2]. A 
variety of MNN models exist, two of which are 
illustrated in Figure 1 [2].  

 
Figure 1. Modular NN topologies 

 MNN’s composed of mixtures of expert 
networks use competition between the expert 
networks in order to learn and classify training data 
[2], [11], [12]. By contrast, cooperative multi-
module integration, as used by ensemble based and 
cooperative MNNs, typically make use of voting 
schemes to determine the final output from groups 
of subnets [1-3]. Other methods of multi-module 
integration include combining the average and 
weighted average outputs, and the use of the 
absolute maximum output of all subnets for 
decoupled MNNs [1], [2], [6], [9], [19]. The 
modular approach used by the research presented 
herein is based on the decoupled subnet model. 

Each subnet will approximate a specific sub-task; 
the network training error calculated using the 
error obtained over all subnets per training pattern, 
and the overall network output obtained through 
the sequential operation of each subnet. 

3 Evolutionary Neural Networks 

 The collaborative combination of EC and NN 
techniques may be used to provide solutions for 
the problems inherent in the design and 
implementation of an optimal NN architecture and 
corresponding set of connection weights [18]. By 
considering the problem of NN topology design as 
a search problem in the space of all possible 
topologies, a GA may be used to search the space 
for an optimal solution. Similarly, the 
disadvantages associated with gradient descent 
based learning, such as the requirement for a 
differentiable error surface, and the search 
becoming trapped in local minima, may be 
overcome using a GA’s ability to cope with large, 
multi-modal, complex search spaces without 
requiring gradient information for the search [16], 
[20], [27]. Research has shown that using a GA for 
the construction of NN architecture or determining 
NN connection weights provides an efficient and 
effective method of implementation for both large 
and small scale problem domains, often 
outperforming traditional design methods and 
learning algorithms [4], [15], [20], [26], [28]. 
Architecture and connection weights may be 
evolved simultaneously through the use of a 
compound encoding within a single chromosome 
representation manipulated by the GA. 
Incorporating such duality in the evolutionary 
process may help overcome the problems of noisy 
fitness evaluation [28] and competing conventions 
[18], which can arise from the evolution of NN 
architecture alone. Care must be taken in the 
choice of encoding scheme used as the optimal NN 
will be obtained from the performance surface 
encoded by the GA’s representation scheme [28]. 

4 Genetic Algorithms 

 As one of the most recognized forms of 
evolutionary algorithms, a GA is the computational 
simulation of evolutionary processes. Potential 
solutions to a problem are encoded as genotypes, 
represented through the use of chromosome strings 
and manipulated using a set of genetic operators 
for chromosome selection, recombination 
(crossover) and mutation [10]. Binary based 
chromosome representations provide a convenient 
and simple representation scheme allowing the 
application of a standard set genetic operators 
however suffer from limited precision. By contrast, 
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real-valued chromosome representations may offer 
increased precision and reduced string length 
however require the implementation of custom 
genetic operators [27], [28]. The GA manipulates a 
population of chromosomes over successive 
generations, decoding each genotype into 
phenotype form for evaluation of the potential 
solution’s fitness. Characteristics and behaviors 
associated with the fittest strings are copied into 
the next generation, thus enabling the search to 
proceed toward an optimal solution, and imbuing 
the GA with the ability to “learn” the 
characteristics of the optimal solution [17]. A 
general description of the GA may be found in [7], 
[10], [17], [24], [25]. 
 The GA used for the automatic creation of a 
set of functional subnets, as presented in this paper, 
will simultaneously search for the a set of optimal 
subnet architectures, corresponding connection 
weights and neuron model parameters by encoding 
these as genotypes within a single, real-valued 
chromosome string. The organization of the 
chromosome string used to encode a maximum of 
n subnets is illustrated in Figure 2, where hn 
represent the number of hidden neurons in the nth 
subnet, nwji and nwkj represent the connection 
weights between the input and hidden layer 
neurons, and the hidden and output layer neurons 
for the nth subnet respectively, and nbj and nbk 
represent the hidden and output neuron biases in 
the nth subnet. 
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Figure 2. Organisation of chromosome for n 

subnets 

If i, j, k represent the number of inputs, hidden 
neurons, and outputs, each subnet will require the 
following number of genes within each 
chromosome string: 

   ( )kjkjji ++++ )*()*(1       (1) 

In the initial population of chromosomes, random 
integers are used to specify the number of hidden 
neurons, while random real numbers are used for 
the specification of connection weights and bias 
values. For each generation all potential subnets 
from each chromosome are independently 
evaluated using a set of training patterns. As input 
patterns are applied to a set of subnets, the sum of 
the squared error between a target output pattern 
and the actual output for each subnet is calculated. 
The summation of the errors over the set of training 
patterns is determined and subsequently used as a 
chromosome’s objective value. The calculation for 
the objective value for a single chromosome (Objc) 

is shown in equation (2). The corresponding 
calculation for the relative fitness (Fc) of a single 
chromosome is given in equation (3).  
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where 
    iY  = desired target output pattern, 

    iŶ  = estimated output pattern, 
     n   = 1, 2,…, no subnets, 
     P   = 1, 2,…, no input patterns, 
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where ,1
Obj

f i =  N  = 1, 2,…, population size.                      

 After the evaluation of all chromosomes in the 
population, the relative fitness values are used by 
the GA’s selection operator. The unbiased selection 
operator, Roulette Wheel Selection [25], is used to 
select chromosomes from the current population 
for inclusion in a mating pool. Pairs of parent 
chromosomes are randomly selected from the 
mating pool for recombination, according to a 
crossover rate, Pc, which determines the probability 
that a chromosome will be used for crossover. The 
custom recombination operator, termed 
‘isomorphic crossover’, has been implemented to 
allow crossover to occur between two parent 
chromosomes consisting of isomorphic subnets 
represented by real-valued chromosome sub-
strings. During isomorphic crossover the topologies 
of all subnets within the parent chromosomes are 
examined to determine if crossover is possible. If 
one or more topologies from both parent 
chromosomes match, single point crossover is 
performed on the respective chromosome sub-
strings in order to create two new child 
chromosomes, as depicted in Figure 3.  

 
 

Figure 3. Isomorphic crossover of subnets 

Child 1 AAAAAABBBBXXXXCCCC

Child 2 XXXXBBBBYYZZZZZZZZZZZZ

AAAAAABBBBBBBBCCCC 

Crossover point (Subnet2, Pos = 4) 

Parent 1 

XXXXXXXXYYZZZZZZZZZZZZ

Crossover point (Subnet1, Pos = 4) 

Parent 2 



 If a single topology from one parent matches 
with multiple topologies from the second parent, a 
subnet is randomly chosen from the second parent 
for crossover. If all subnet topologies from both 
parent chromosomes match, then single point 
crossover is performed over the entire length of the 
parent chromosome strings. When no topologies 
match, non-isomorphic crossover is applied, 
performing random mutation on gene values within 
both parent chromosomes. Chromosome strings 
that have been selected from the mating pool for 
recombination are always added to the next 
generation of the population, either as direct 
copies, if no recombination occurs, or as child 
chromosomes. Once a new population of 
chromosomes has been generated the GA’s 
mutation operator is applied. Mutation is performed 
on randomly selected gene values within the entire 
population according to a mutation rate, Pm, which 
determines the probability that mutation will occur 
on an individual gene. Genes selected for mutation 
have a value in the interval [0,1] randomly added 
or subtracted. Pm is set at a higher rate for non-
isomorphic crossover than for the standard 
mutation operator to ensure at least one of the 
genes in a chromosome selected for recombination 
will be modified. Using real-valued chromosomes 
necessitates the use of a single gene to encode the 
number of hidden neurons in each subnet. As 
isomorphic crossover only crosses genes within 
individual subnets, the topology of a subnet may 
only be modified through mutation, either as a 
result of non-isomorphic crossover or the mutation 
operator. The cycle of evaluation, selection, 
recombination and mutation repeats until a 
maximum number of generations of chromosomes 
have been evolved. Figure 4 illustrates cycle of 
processing performed by the collaborative GA-NN 
system.  
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Figure 4. Block diagram of GA-NN system 

5 Finite State Machines & Mealy Machine 
Example 

 Finite State Machines (FSM) embody a class 
of abstract machine that represent the behaviour of 
sequential logic circuits. Characterised by a set of 
inputs, outputs and internal states, a “memory” of 
previous inputs is retained through the use of a 
FSM’s internal states. One type of FSM known as 
a Mealy machine, due to the outputs being 
dependent on the input and current state, can be 
defined by the ordered sextuple M = (Q,I,O,δ,β,q0), 
where Q is a finite set of internal states, I is a finite 
set of inputs, O is a finite set of outputs, δ is the 
transition function δ : Q x I → Q, β is the output 
function β : Q x I → O, and q0 ∈ Q is the initial 
state [14], [23]. 
 Sequential circuits consist of a number of 
combinational logic circuits connected in a 
feedback loop with state memory circuitry. Binary 
values stored by state memory circuits, typically 
using a flip-flop for the storage of two distinct 
states, define the state of the sequential circuit at a 
given time t. Updating the state of the circuit at 
time t+1 requires a function of the inputs and the 
state of the circuit at time t. Synchronisation of the 
flip-flops is achieved through the use of a clock 
pulse, upon receipt of which the state memory is 
updated [14], [23]. A binary counter circuit iterates 
through a predefined sequence of binary states in 
response to a series of input pulses, known as 
“count pulses”. When 3-bits are used, the binary 
count from 000→111 is repeated, each bit of the 
counter corresponding to the state of a flip-flop at a 
given time t. Figure 5 demonstrates the sequential 
logic circuit required for a 3-bit binary counter in 
which a single T flip-flop is used to maintain the 
state for each bit. The outputs from each flip-flop, 
denoted C0, C1, C2, form the count sequence [14]. 

Figure 5. 3-bit binary counter circuit diagram 

 Labeling the flip-flops, TC0, TC1, and TC2 
respectively, the current state of the flip-flops at 
time t, the state of the flip-flops at time t+1 and the 
inputs required to affect the state transition are 
listed in Table 1. The count sequence follows the 
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sequence of states from Q(t) to Q(t+1) for each 
flip-flop in response to a value of 1 being received 
by the first flip-flop TC0 [14]. 

Table 1. State transitions for 3-bit binary counter 
 

Q(t) Q(t+1) Input sequence 

C2 C1 C0 
C
2 

C
1 

C
0 

TC
2 

TC
1 

TC
0 

0 0 0 0 0 1 0 0 1 
0 0 1 0 1 0 0 1 1 
0 1 0 0 1 1 0 0 1 
0 1 1 1 0 0 1 1 1 
1 0 0 1 0 1 0 0 1 
1 0 1 1 1 0 0 1 1 
1 1 0 1 1 1 0 0 1 
1 1 1 0 0 0 1 1 1 

6 Subnet Implementation 

 The logic circuit of Figure 5 may be 
approximated through the use of a MNN, as 
illustrated in Figure 6. The functionality associated 
with individual automaton (flip flops TC0, TC1, 
and TC2) are represented by the subnets, NN TC0, 
NN TC1, and NN TC2. For each subnet, input and 
output layer neurons are determined by the inputs 
and outputs required for each flip flop, with the use 
of an additional input to each subnet corresponding 
to the current state, Q(t), of the respective flip flop.  

 
Figure 6. Overall MNN Structure 

 During subnet training, errors obtained from 
the outputs of the individual subnets are combined 
to produce an overall error value, thus retaining the 
coupling between individual subnets. Once an 
optimal set of subnets has been evolved, the 
sequential operation of the three subnets enables 
the construction of an overall MNN. As illustrated 
in Figure 6, the input to the first subnet consists of 
an input sequence, coupled with the current state of 
the subnet. For the second and third subnets, the 
input sequences used are determined from the 
outputs of the previous subnets. The three bit 
counter output is formed by the concatenating the 
output from the individual subnets. 

7 Experimentation & Results 

 The MNN developed in Section 6, Figure 6, 
for the 3-bit binary counter was implemented 
through the evolution of the chromosome structure 
presented in Section 4, Figure 2. Each chromosome 
manipulated by the GA encoded the genotype 
representations for the three subnets shown in 
Figure 6. The algorithm for the collaborative GA-
NN system, as depicted in Section 4, Figure 4, was 
repeatedly run for 200 generations, each containing 
an initial population size of 20 chromosomes, with 
the eventual production of a set of subnets capable 
of approximating the desired output patterns from 
the set of target input patterns. Running the subnets 
sequentially resulted in the concatenated output 
displaying the expected count sequence. The 
choice of training patterns provided an initial 
challenge with regard to specifying a set of patterns 
which would allow for the desired output from 
each of the subnets, while enabling the GA to 
successfully converge. One caveat of the chosen set 
of training patterns is that each subnet requires the 
current state of the flip flop to be approximated, 
Q(t), to be input along with the corresponding input 
pattern. When using this combination of inputs to 
each subnet, only a small number of training 
patterns were required to affect the correct 
operation of the evolved subnets. Figure 7 
illustrates the average and minimum objective 
values obtained by the GA over 200 generations.  
 

Figure 7. Objective value over 200 generations 

 As illustrated in Figure 7, convergence occurs 
rapidly within the first 20 generations, most likely 
due to the Roulette Wheel Selection algorithm 
used, followed by a period of oscillation with a 
slower convergence rate. Generations 140 to 200 
provide a reduction in oscillations, resulting in 
stability of the minimum and average objective 
values towards the final generation. The minimum 
objective value, and subsequent chromosome used 
for further testing was obtained from generation 
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198. Figure 8 illustrates the corresponding average 
and maximum raw fitness values obtained. 
 

Figure 8. Raw fitness value over 200 generations 

 In correspondence with the reduction in 
oscillation and stability of the objective value, both 
average and maximum raw fitness values rapidly 
increase in size though oscillate towards the final 
generations. From the graph of the maximum raw 
fitness value, it can be seen that the chosen 
chromosome at generation 198 corresponds to the 
maximum raw fitness value obtained. The three 
subnets obtained from the chromosome had 6, 4, 
and 5 hidden neurons respectively.                 

8  Conclusion 

 In this research, the 3-bit binary counter, as a 
representative Mealy machine, has been 
decomposed into a set of simple automaton, each 
approximated by a small feed-forward neural 
network. The collaborative combination of GAs 
and NNs has been used to overcome the issues 
associated with traditional NN design, enabling the 
automatic creation of an optimal set of subnets, 
which successfully approximate the desired output 
of the counter when operated in a sequential 
manner. Using a modular approach to 
decomposition of the overall functionality has 
allowed for a small set of training patterns to be 
used, thus reducing computation requirements and 
convergence speeds for the individual subnets. The 
success of the approach for the chosen example 
implies that any finite state machine may be 
approximated in a similar fashion. Further research 
into the combination of GA and MNN approaches 
to complex function approximation from fields 
other than digital logic design would further 
strengthen the current research. 
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