
Verifying Cryptographic Protocols
Xiaoqi Ma1 and Xiaochun Cheng2

Department of Computer Science, The University of Reading
Reading RG6 6AY, England, UK

1xiaoqi.ma@rdg.ac.uk
2x.cheng@rdg.ac.uk

Abstract - Information security is a key issue of network
communication. Existing cryptographic protocols usually
contain flaws. This paper attempts to provide a new
framework to verify these protocols. A many-valued logic
is used to describe the knowledge and belief states of
participating principles. A number of predicates and
action functions are also used to model the network
communication environment. Domain rules are given to
describe the transitions of principals’ knowledge and
belief states. An example of public key authentication
protocols has been studied to show the validity of the
framework.

Keywords: Many-valued logic, protocol verification,
cryptographic protocol.

1 Introduction
 Information security is important for communication
over the Internet. To keep secrecy of sensitive
information, cryptography and security protocols are
extensively used. However, cryptographic protocols often
have flaws. As a result, protocol verification becomes a
research highlight.

 There are two main categories of formal methods for
protocol verification. One is the state-based methods, and
the other is the rule-based methods. The first kind can
verify most protocols, but the search spaces will become
huge when the protocols are complex [8]. The methods of
the second kind could be efficient, but they also have
some problems [5]. For example, the BAN logic and the
ENDL framework can only detect flaws in limited types
of protocols and ignore others [2][8].

 In this paper, we propose a new formal framework
of cryptographic protocol verification. Our framework is
based on a many-valued logic [3][4]. The set of truth
values has been extended beyond the traditional {true,
false} set. We use a four-valued logic with truth value set
{true, false, inconsistent, ignorant} in this paper. Rules in
the framework describe the conditions under which
knowledge and belief states will be changed.

 In this paper, we first give a brief overview of
preliminary knowledge about lattice-valued logic, and
then give a detailed description of our framework.
Thereafter, we take the famous Needham-Schroeder
public key authentication protocol [7][8] as an example.
Then we discuss the non-monotonic property of the
framework. The last section concludes the paper.

2 Preliminaries
 Belnap proposed a four-valued logic [1] to deal with
inference concerning inconsistent or incomplete
information. His ideas have been extensively studied and
then extended by Ginsburg to a bilattice structure [3][4].
In Ginsburg’s work, a bilattice is defined as “a set
equipped with two partial orders and a negation operation
that inverts one of them while leaving the other
unchanged; it has been suggested that the truth values
used by inference systems should be chosen from such a
structure instead of the two-point set {t, f}” [4]. A
bilattice consists of two tightly combined lattices sharing
same truth values whose number is usually larger than 2.

 In cryptographic protocol verification, it is natural to
use bilattice to represent the concept and degree of truth,
belief and knowledge. The bilattice we use in this paper is
the so-called “smallest nontrivial bilattice” and consists of
four logical values: true, false, inconsistent and ignorant
[4]. There are two different partial orders (and therefore
two different “single” lattices) in this bilattice [9]:

• A truth lattice with the logical values true and
false at the top and bottom, and with inconsistent
and ignorant between them, respectively.

• A knowledge lattice with the logical values
inconsistent and ignorant at the top and bottom,
and with true and false between them,
respectively.

 This structure can be depicted as the Hasse diagram
[4][9] in Figure 1.

Figure 1. Hasse diagram of the bilattice

 This paper uses the truth part of the bilattice. The
truth lattice has the same connective set as traditional
logic, although the semantics and truth tables are quite
different. The truth tables for the three basic connectives
∧ (and), ∨ (or) and ¬ (not) are given in Table 1 [9]. To
save space, we use T, F, U and C instead of True, False,
Ignorant and Inconsistent, respectively.

Table 1. Truth tables of and, or and not for the lattice

∧ T F U C
T T F U C
F F F F F
U U F U F
C C F F C

(a) Truth table for the connective and

∨ T F U C
T T T T T
F T F U C
U T U U T
C T C T C

(b) Truth table for the connective or

¬
T F
F T
U U
C C

 (c) Truth table for the connective not

 The commutative, associative and distributive laws
hold for ∧ and ∨ as well as the De Morgan laws and the
double negation law [9].

 There are universal and existential quantifiers in the
logic. The universal quantifier ∀ (“for all”) and the
existential ∃ (“there exists”) has similar syntax and
semantics as those in first-order predicate logic.

3 The verification framework
 Our framework is composed of a number of basic
notations, predicates, action functions, assumptions and
rules, which are described as follows.

3.1 Basic notations

 Individuals taking part in network communications
are called principals, denoted with uppercase letters.
Conventionally, A, B, …, stand for “honest” principals,
while I stands for the intruder, or, in some literatures, the
adversary or the spy, which are synonyms in our context.

 Random numbers chosen by principals serve as
nonces to identify protocol runs uniquely and avoid replay
attack [8]. Nonces are normally denoted as Na, Nb, etc,
where the subscripts imply the producers of the nonces.

 Every principal has some keys. In public key
cryptosystem, the principal A basically has a public key
and a corresponding private key, which are denoted as Ka
and Ka

-1, respectively. On the other hand, in symmetric
key cryptosystem, two communicating principals A and B
normally share a session key, denoted as Kab.

 A message is a piece of information sent from one
principal to another. A message can consist of names of
principals, keys, nonces, or the combination of them.
Compound messages are bracketed using curly braces,
such as {A, Na}. A compound message consisting more
than two components can be understood as nested
compound message. For example, {M1, M2, M3} is the
abbreviation of {{M1, M2}, M3}. A message can be
encrypted or signed with a certain key. An encrypted
message is attached with the key as the subscript. For
example, a message M encrypted with B’s public key can
be written as

bKM . To gain clarity, we usually add curly

brackets to the encrypted message, such as
bKM}{ .

3.2 Predicates

 Several predicates are used in our framework to
describe certain belief and knowledge states.

 The predicate Know(X, M) describes X’s knowledge
state about message M. If X knows that M is true, then the
logical value of the predicate is true; if X knows that M is
false, then its logical value is false; if X has no
information about the truth of M, then its logical value is
ignorant; if X has both information to conclude that M is
true and false, then its logical value is inconsistent.

 Similarly, the predicate Auth(X, Y, M) describes X’s
authentication state about Y on message M, that is,
whether message M is sent by Y to X and unmodified.

3.3 Action functions

 A cryptographic protocol can be regarded as a series
of message sending behaviours between different
principals. We introduce action functions to describe this
kind of behaviours. An action function Send(X, Y, M)
means that the principal X sends the message M to another
principal Y.

 Accordingly, an action function Rcv(X, M) means
that the principal X receives the message M from another.

3.4 Assumptions

 Our inference system is based on some assumptions,
which are widely accepted by most researchers in this
field.

• In public cryptosystems, the public key of any
principal is known to all other principals, while
its private key is initially secret from others.
Formally,

∀ X.∀ Y. (Know(X, KY)≡T)

∀ X.∀ Y. (X≠ Y→ (Know(X, KY
-1) ≡U))

• In symmetric cryptosystems, the session key
shared between two principals is initially secret
and unknown by all other principals (except the
key server who knows all the keys in the whole
system).

• The intruder always observes all messages sent
through the network. He tries to use all the keys
he knows to decrypt the messages on the network
and send forged messages to others. He can also
intercept messages sent from one principal to
another. That is, the intruder has the “full”
control over the network.

• There is only one intruder in the network. We
always use I to denote the intruder.

• The intruder cannot read an encrypted message
without the corresponding decryption key; i.e.
secret keys are unguessable.

• An honest principal only read information
addressed to him.

• A principal never sends messages to himself.

• Nonces are always different from each other.

3.5 Rules

 A group of inference rules have been introduced into
our framework to infer new knowledge from the old. We
adopt some basic ideas from [2] but they are essentially
different. All these rules can be divided into four
categories:

 (1) Encryption/Decryption rules

 1.1 Know(X, M)∧Know(X, K)→Know(X, MK)

 When a principal knows a message and a key, he can
use this key to encrypt (sign) this message and get the
encrypted (signed) message.

 1.2 Know(X, MK)∧Know(X, K-1)→Know(X, M)

 When a principal knows a message encrypted
(signed) with a key and the reverse of the key, he can use
the reverse of the encryption (signature) key to get the
original message. In public key cryptosystem, the public
and private keys of a principal are reverses of each other.
In symmetric cryptosystem, the reverse of a session key
between two principals is itself (or a simple function of
itself).

 (2) Message combination/separation rules

 2.1 Know(X, M1) ∧ Know(X, M2)→ Know(X, {M1,
M2})

 When a principal knows two messages, he can know
the combination of them.

 2.2 Know(X, {M1, M2}) → Know(X, M1)∧Know(X,
M2)

 When a principal knows the combination of two
messages, he can know them separately. These two rules
can be used inductively to deal with compound messages
consisting of more than two components.

 (3) Message sending/receiving rules

 3.1 Send(X, Y, M)→Rcv(Y, M)

 If a principal sends a message to another one, the
object principal will eventually receive it.

 3.2 Send(X, Y, M)→Rcv(I, M)

 As one of our assumptions describes, the intruder I
can observe all information flowing over the network.

 3.3 Rcv(X, M)→Know(X, M)

 After a principal receive a message, he will know it.

 (4) Authentication rule

 4.1 Know(X, M) ∧ Know(Y, M) ∧ ∀ Z.((Z ≠ X
∧ Z ≠ Y) → (Know(Z, M) ≡ U) ∧ Rcv(X,
M)→Auth(X, Y, M)

 When only two principals X and Y know a certain
message (i.e. no other principals know it), and X received
it from other principal (remember our assumption that a
principal never sends messages to himself), he can
authenticate that the message was sent by Y and
unmodified.

 4.2 ∀ X, Y.(∃ Z.((Z ≠ X ∧ Z ≠ Y) ∧ Know(Z,
M))→ (Auth(X, Y, M) ≡F))

 If a message has been divulged to a third party other
than X and Y, then X will not authenticate that the message
was sent by Y and unmodified.

3.6 Protocol modeling

 A cryptographic protocol can be modeled as a series
of send action functions, each meaning that a principal
sends a message to another one.

4 Case study
 An example is given here to describe how to use our
framework to verify cryptographic protocols.

4.1 Needham-Schroeder public key authentication
protocol

 Originally, the Needham-Schroeder public key
protocol [7] involves seven steps, four of which are
concerning public key distribution procedures. In our
model, all principals’ public keys are open and known to
the entire world. Therefore, the protocol can be simplified
to only three steps [6] as follows.

1. A→B: {Na, A}
bK

2. B→A: {Na, Nb}
aK

3. A→B: {Nb}
bK

4.2 Lowe’s fix to the Needham-Schroeder protocol

 Lowe found a flaw [6] in the Needham-Schroeder
public key protocol seventeen years after it was published.
Lowe fixed the flaw by adding principal B’s name into the
second message sent from B to A [6]. This fix has been
proved to be correct and the new protocol is now secure
[8]. The fixed protocol looks like as follows.

1. A→B: {Na, A}
bK

2. B→A: {Na, Nb, B}
aK

3. A→B: {Nb} bK

4.3 Modeling the Needham-Schroeder protocol

 The original protocol can be easily modeled as three
message sending actions.

NS-1: Send(A, B, {Na, A}
bK)

NS-2: Send(B, A, {Na, Nb}
aK)

NS-3: Send(A, B, {Nb}
bK)

4.4 Verifying the Needham-Schroeder protocol

 We formalise our assumptions, protocol steps, and
assertions into logical formulae. At the very beginning,
every principal knows all other’s public key, but does not
know any private key except that of himself.

(1) Know(A, Kb) ≡T Assumption

(2) Know(B, Ka) ≡T Assumption

(3) Know(I, Ka) ≡T Assumption

(4) Know(I, Kb) ≡T Assumption

(5) Know(A, Ki) ≡T Assumption

(6) Know(A, Ka
-1) ≡T Assumption

(7) Know(B, Kb
-1) ≡T Assumption

(8) Know(I, Ki
-1) ≡T Assumption

(9) Know(I, {Nb}
bK)≡U Assumption

 Then the protocol starts. Due to symmetry, we only
need to consider the case that the principal A initialises the

protocol. In A’s view, he sends a message to another
principal he wants to talk to. However, there are still two
cases: (1) the message is sent to an honest principal, say,
B, and (2) the message is sent to the intruder I.

 In the first case, we can prove that the protocol can
be carried on to the end. But this case does not explicitly
concern the intruder, so we will not know whether the
intruder can break the protocol. Therefore, we should
consider the second case carefully. The following
formulae describe the run of the protocol in this case.

(10) Send(A, I, {Na, A}
iK)≡T NS-1 (run 1)

(11) Rcv(I, {Na, A}
iK)≡T [3.1] (10)

(12) Know(I, {Na, A}
iK)≡T [3.3] (11)

(13) Know(I, {Na, A})≡T [1.2] (8)(12)

(14) Know(I, Na) ≡T [2.2] (13)

 By now, I has successfully got A’s nonce Na. He can
then use it to produce fake message and send it to another
honest principal B to initialise a new session,
impersonating A.

(15) Send(I, B, {Na, A}
bK)≡T NS-1 (run 2)

(16) Rcv(B, {Na, A}
bK)≡T [3.1] (15)

(17) Know(B, {Na, A}
bK)≡T [3.3] (16)

(18) Know(B, {Na, A})≡T [1.2] (7)(17)

(19) Know(B, Na) ≡T [2.2] (18)

(20) Send(B, I, {Na, Nb}
aK)≡T NS-2 (run 2)

(21) Rcv(I, {Na, Nb}
aK)≡T [3.1] (20)

(22) Know(I, {Na, Nb}
aK)≡T [3.3] (21)

 Since I cannot decrypt the message {Na, Nb}
aK , his

only choice is to send it to A and use A as an oracle.

(23) Send(I, A, {Na, Nb}
aK)≡T NS-2 (run 1)

(24) Rcv(A, {Na, Nb}
aK)≡T [3.1] (23)

(25) Know(A, {Na, Nb} aK)≡T [3.3] (24)

(26) Know(A, {Na, Nb })≡T [1.2](6) (25)

(27) Know(A, Nb) ≡T [2.2] (26)

(28) Send(A, I, {Nb}
iK)≡T NS-3 (run 1)

(29) Rcv(I, {Nb}
iK)≡T [3.1] (28)

(30) Know(I, {Nb} iK)≡T [3.3] (29)

(31) Know(I, Nb) ≡T [2.2] (8)(30)

(32) Know(I, {Nb}
bK)≡T [1.1] (4)(31)

(33) Auth(B, A, {Nb} bK)≡F [4.2] (32)

 Therefore, B will not authenticate that {Nb}
bK is sent

by A and unmodified. It indicates a flaw in the Needham-
Schroeder public key protocol. Actually, Nb is the nonce
helping B identify A and should be kept secret from all
other principals, especially the intruder. However, the
inference step (31) shows that Nb has been divulged to I.
This implies the flaw in the protocol.

 On the contrary, in the fixed Needham-Schroeder
public key protocol, this will not happen. The steps (1) to
(19) are same to the above case. Steps from (20) are as
follows.

(20’) Send(B,I,{Na,Nb,B}
aK)≡T NS-2 (run 2)

(21’) Rcv(I, {Na, Nb, B}
aK)≡T [3.1] (20’)

(22’) Know(I,{Na,Nb,B}
aK)≡T [3.3] (21’)

(23’) Send(I,A,{Na,Nb,B}
aK)≡T NS-2 (run 1)

(24’) Rcv(A, {Na, Nb,B}
aK)≡T [3.1] (23’)

(25’) Know(A,{Na,Nb,B}
aK)≡T [3.3] (24’)

(26’) Know(A,{Na,Nb,B})≡T [1.2](6)(25’)

When the verification proceeds to step (25), A will find
the inconsistency between the name of I and the name in
the received message, and he will then interrupt the
session.

 Therefore, Nb will not be sent out by A and divulged
[8]. So the logical statement Know(I, {Nb}

bK) ≡U will
remain true. Then the inference rule 4.1 can be safely
used and the conclusion Auth(B, A, {Nb}

bK) will be
achieved, indicating the correctness of the fixed protocol.

5 Non-monotonic Property
 Our framework is non-monotonic. The knowledge
and belief of a principal keep changing during the process
of inference.

 At the beginning of a new run of a protocol, some
assumptive statements and assertions are given. These
statements are actually based on incomplete information,
since at that time the protocol has not started yet and we
do not know what will happen. Unlike monotonic
inference, these statements and assertions do not
necessarily always keep static in the inference. With the
inference going on, some assertions may be changed.

 As an example, in the verification of the Needham-
Schroeder public key protocol, I does not know B’s nonce
Nb at first, and we assume Know(I, {Nb} bK) ≡U in the

step (9) of the example. After some steps, I gets the secret
number Nb by using A as an oracle to decrypt the
encrypted message {Na, Nb} aK . Therefore the assumption

Know(I, {Nb} bK)≡U will not hold any longer. Instead,

we will have Know(I, {Nb}
bK) ≡T in the step (32) of the

example. This shows that the temporary results could be
“updated”.

6 Conclusions
 In this paper, we have presented a new framework to
verify cryptographic protocols. The framework is based
on many-value logic, which contains four logic values:
true, false, inconsistent and ignorant. We have introduced
a number of rules to describe the knowledge and belief
states of principals and the relationships among them.
These rules give the conditions under which the
knowledge and belief states can be changed, and how they
can change. We have presented the verification process of
the simplified Needham-Schroeder public key
authentication protocol and of the fixed counterpart
suggested by Lowe. These examples show how to use our
framework.

Acknowledgements

Our researches had been supported by EC, EPSRC, the
National Natural Science Foundation of China, and
Hong Kong K C Wang Education Foundation.

References
[1] N. D. Belnap, Jr., “A useful four-valued logic”.
Dunn, J. M. and Epstein, G., editors, Modern Uses of
Multiple-Valued Logic, pp. 8-37, 1977.

[2] Qingfeng Chen, “The verification logic for secure
transaction protocols”, PhD dissertation, University of
Technology, Sydney, 2004.

[3] Matthew L. Ginsberg, “Multivalued logics: a
uniform approach to reasoning in artificial intelligence”,
Computational Intelligence, Vol 4, pp. 265-316, 1988.

[4] Matthew L. Ginsberg, “Bilattices and Modal
Operators”, Journal of Logic and Computation, Vol 1,
No. 1, July 1990.

[5] Armin Liebl. “Authentication in Distributed
Systems: A Bibliography”, Operating Systems Review,
Vol 27, No. 4, pp. 122-136, October 1993.

[6] Gavin Lowe, “An attack on the Needham-Schroeder
public-key authentication protocol”, Information
Processing Letters, Vol 56, No. 3, pp 131-133, 1995.

[7] Roger Needham and Michael Schroeder, “Using
encryption for authentication in large networks of
computers”, Communications of the ACM, Vol 21, No.
12, pp. 993-999, 1978.

[8] Lawrence C. Paulson, “The inductive approach to
verifying cryptographic protocols”, Journal of Computer
Security, Vol 6, No.1, pp. 85-128, September 1998.

[9] Jorgen Villadsen, “Paraconsistent knowledge bases
and many-valued logic”, Proceedings of the International
Baltic Conference on Database and Information Systems,
Tallinn, Estonia, pp. 77-90, 2002 (Revised).

