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Abstract - Information security is a key issue of network 
communication. Existing cryptographic protocols usually 
contain flaws. This paper attempts to provide a new 
framework to verify these protocols. A many-valued logic 
is used to describe the knowledge and belief states of 
participating principles. A number of predicates and 
action functions are also used to model the network 
communication environment. Domain rules are given to 
describe the transitions of principals’ knowledge and 
belief states. An example of public key authentication 
protocols has been studied to show the validity of the 
framework. 
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1 Introduction 
  Information security is important for communication 
over the Internet. To keep secrecy of sensitive 
information, cryptography and security protocols are 
extensively used. However, cryptographic protocols often 
have flaws. As a result, protocol verification becomes a 
research highlight. 

  There are two main categories of formal methods for 
protocol verification. One is the state-based methods, and 
the other is the rule-based methods. The first kind can 
verify most protocols, but the search spaces will become 
huge when the protocols are complex [8]. The methods of 
the second kind could be efficient, but they also have 
some problems [5]. For example, the BAN logic and the 
ENDL framework can only detect flaws in limited types 
of protocols and ignore others [2][8]. 

 In this paper, we propose a new formal framework 
of cryptographic protocol verification. Our framework is 
based on a many-valued logic [3][4]. The set of truth 
values has been extended beyond the traditional {true, 
false} set. We use a four-valued logic with truth value set 
{true, false, inconsistent, ignorant} in this paper. Rules in 
the framework describe the conditions under which 
knowledge and belief states will be changed. 

 In this paper, we first give a brief overview of 
preliminary knowledge about lattice-valued logic, and 
then give a detailed description of our framework. 
Thereafter, we take the famous Needham-Schroeder 
public key authentication protocol [7][8] as an example. 
Then we discuss the non-monotonic property of the 
framework. The last section concludes the paper. 

2 Preliminaries 
 Belnap proposed a four-valued logic [1] to deal with 
inference concerning inconsistent or incomplete 
information. His ideas have been extensively studied and 
then extended by Ginsburg to a bilattice structure [3][4]. 
In Ginsburg’s work, a bilattice is defined as “a set 
equipped with two partial orders and a negation operation 
that inverts one of them while leaving the other 
unchanged; it has been suggested that the truth values 
used by inference systems should be chosen from such a 
structure instead of the two-point set {t, f}” [4]. A 
bilattice consists of two tightly combined lattices sharing 
same truth values whose number is usually larger than 2. 

 In cryptographic protocol verification, it is natural to 
use bilattice to represent the concept and degree of truth, 
belief and knowledge. The bilattice we use in this paper is 
the so-called “smallest nontrivial bilattice” and consists of 
four logical values: true, false, inconsistent and ignorant 
[4]. There are two different partial orders (and therefore 
two different “single” lattices) in this bilattice [9]: 

• A truth lattice with the logical values true and 
false at the top and bottom, and with inconsistent 
and ignorant between them, respectively.  

• A knowledge lattice with the logical values 
inconsistent and ignorant at the top and bottom, 
and with true and false between them, 
respectively. 

 This structure can be depicted as the Hasse diagram 
[4][9] in Figure 1. 



 

Figure 1. Hasse diagram of the bilattice 

 This paper uses the truth part of the bilattice. The 
truth lattice has the same connective set as traditional 
logic, although the semantics and truth tables are quite 
different. The truth tables for the three basic connectives 
∧ (and), ∨ (or) and ¬ (not) are given in Table 1 [9]. To 
save space, we use T, F, U and C instead of True, False, 
Ignorant and Inconsistent, respectively. 

Table 1. Truth tables of and, or and not for the lattice 

∧  T F U C 
T T F U C 
F F F F F 
U U F U F 
C C F F C 

 
(a) Truth table for the connective and 

∨  T F U C 
T T T T T 
F T F U C 
U T U U T 
C T C T C 

 
(b) Truth table for the connective or 

¬   
T F 
F T 
U U 
C C 

 
 (c) Truth table for the connective not 

 The commutative, associative and distributive laws 
hold for ∧  and ∨  as well as the De Morgan laws and the 
double negation law [9]. 

 There are universal and existential quantifiers in the 
logic. The universal quantifier ∀  (“for all”) and the 
existential ∃  (“there exists”) has similar syntax and 
semantics as those in first-order predicate logic. 
 

3 The verification framework 
 Our framework is composed of a number of basic 
notations, predicates, action functions, assumptions and 
rules, which are described as follows. 

3.1 Basic notations 

 Individuals taking part in network communications 
are called principals, denoted with uppercase letters. 
Conventionally, A, B, …, stand for “honest” principals, 
while I stands for the intruder, or, in some literatures, the 
adversary or the spy, which are synonyms in our context. 

 Random numbers chosen by principals serve as 
nonces to identify protocol runs uniquely and avoid replay 
attack [8]. Nonces are normally denoted as Na, Nb, etc, 
where the subscripts imply the producers of the nonces. 

 Every principal has some keys. In public key 
cryptosystem, the principal A basically has a public key 
and a corresponding private key, which are denoted as Ka 
and Ka

-1, respectively. On the other hand, in symmetric 
key cryptosystem, two communicating principals A and B 
normally share a session key, denoted as Kab. 

 A message is a piece of information sent from one 
principal to another.  A message can consist of names of 
principals, keys, nonces, or the combination of them. 
Compound messages are bracketed using curly braces, 
such as {A, Na}. A compound message consisting more 
than two components can be understood as nested 
compound message. For example, {M1, M2, M3} is the 
abbreviation of {{M1, M2}, M3}. A message can be 
encrypted or signed with a certain key. An encrypted 
message is attached with the key as the subscript. For 
example, a message M encrypted with B’s public key can 
be written as 

bKM . To gain clarity, we usually add curly 

brackets to the encrypted message, such as 
bKM}{ . 

3.2 Predicates 

 Several predicates are used in our framework to 
describe certain belief and knowledge states. 



 The predicate Know(X, M) describes X’s knowledge 
state about message M. If X knows that M is true, then the 
logical value of the predicate is true; if X knows that M is 
false, then its logical value is false; if X has no 
information about the truth of M, then its logical value is 
ignorant; if X has both information to conclude that M is 
true and false, then its logical value is inconsistent. 

 Similarly, the predicate Auth(X, Y, M) describes X’s 
authentication state about Y on message M, that is, 
whether message M is sent by Y to X and unmodified. 

3.3 Action functions 

 A cryptographic protocol can be regarded as a series 
of message sending behaviours between different 
principals. We introduce action functions to describe this 
kind of behaviours.  An action function Send(X, Y, M) 
means that the principal X sends the message M to another 
principal Y.  

 Accordingly, an action function Rcv(X, M) means 
that the principal X receives the message M from another.  

3.4 Assumptions 

 Our inference system is based on some assumptions, 
which are widely accepted by most researchers in this 
field. 

• In public cryptosystems, the public key of any 
principal is known to all other principals, while 
its private key is initially secret from others. 
Formally, 

∀ X.∀ Y. (Know(X, KY)≡T) 

∀ X.∀ Y. (X≠ Y→ (Know(X, KY
-1) ≡U)) 

• In symmetric cryptosystems, the session key 
shared between two principals is initially secret 
and unknown by all other principals (except the 
key server who knows all the keys in the whole 
system). 

• The intruder always observes all messages sent 
through the network. He tries to use all the keys 
he knows to decrypt the messages on the network 
and send forged messages to others. He can also 
intercept messages sent from one principal to 
another. That is, the intruder has the “full” 
control over the network. 

• There is only one intruder in the network. We 
always use I to denote the intruder. 

• The intruder cannot read an encrypted message 
without the corresponding decryption key; i.e. 
secret keys are unguessable. 

• An honest principal only read information 
addressed to him. 

• A principal never sends messages to himself. 

• Nonces are always different from each other. 

3.5 Rules 

 A group of inference rules have been introduced into 
our framework to infer new knowledge from the old. We 
adopt some basic ideas from [2] but they are essentially 
different. All these rules can be divided into four 
categories:  

 (1) Encryption/Decryption rules 

 1.1 Know(X, M)∧Know(X, K)→Know(X, MK)  

 When a principal knows a message and a key, he can 
use this key to encrypt (sign) this message and get the 
encrypted (signed) message. 

 1.2 Know(X, MK)∧Know(X, K-1)→Know(X, M) 

 When a principal knows a message encrypted 
(signed) with a key and the reverse of the key, he can use 
the reverse of the encryption (signature) key to get the 
original message. In public key cryptosystem, the public 
and private keys of a principal are reverses of each other. 
In symmetric cryptosystem, the reverse of a session key 
between two principals is itself (or a simple function of 
itself). 

 

 (2) Message combination/separation rules 

 2.1 Know(X, M1) ∧ Know(X, M2)→ Know(X, {M1, 
M2}) 

 When a principal knows two messages, he can know 
the combination of them. 

 2.2 Know(X, {M1, M2}) →  Know(X, M1)∧Know(X, 
M2) 

 When a principal knows the combination of two 
messages, he can know them separately. These two rules 
can be used inductively to deal with compound messages 
consisting of more than two components. 

 



 (3) Message sending/receiving rules 

 3.1 Send(X, Y, M)→Rcv(Y, M) 

 If a principal sends a message to another one, the 
object principal will eventually receive it. 

 3.2 Send(X, Y, M)→Rcv(I, M)  

 As one of our assumptions describes, the intruder I 
can observe all information flowing over the network. 

 3.3 Rcv(X, M)→Know(X, M) 

 After a principal receive a message, he will know it. 

 (4) Authentication rule 

 4.1 Know(X, M) ∧ Know(Y, M) ∧ ∀ Z.((Z ≠ X 
∧ Z ≠ Y) → (Know(Z, M) ≡ U) ∧ Rcv(X, 
M)→Auth(X, Y, M)  

 When only two principals X and Y know a certain 
message (i.e. no other principals know it), and X received 
it from other principal (remember our assumption that a 
principal never sends messages to himself), he can 
authenticate that the message was sent by Y and 
unmodified. 

 4.2 ∀ X, Y.( ∃ Z.((Z ≠ X ∧ Z ≠ Y) ∧ Know(Z, 
M))→  (Auth(X, Y, M) ≡F)) 

 If a message has been divulged to a third party other 
than X and Y, then X will not authenticate that the message 
was sent by Y and unmodified. 

3.6 Protocol modeling 

 A cryptographic protocol can be modeled as a series 
of send action functions, each meaning that a principal 
sends a message to another one. 

4 Case study 
 An example is given here to describe how to use our 
framework to verify cryptographic protocols. 

4.1 Needham-Schroeder public key authentication 
protocol 

 Originally, the Needham-Schroeder public key 
protocol [7] involves seven steps, four of which are 
concerning public key distribution procedures. In our 
model, all principals’ public keys are open and known to 
the entire world. Therefore, the protocol can be simplified 
to only three steps [6] as follows. 

1. A→B: {Na, A}
bK  

2. B→A: {Na, Nb}
aK  

3. A→B: {Nb}
bK  

4.2 Lowe’s fix to the Needham-Schroeder protocol 

 Lowe found a flaw [6] in the Needham-Schroeder 
public key protocol seventeen years after it was published. 
Lowe fixed the flaw by adding principal B’s name into the 
second message sent from B to A [6]. This fix has been 
proved to be correct and the new protocol is now secure 
[8]. The fixed protocol looks like as follows. 

1. A→B: {Na, A}
bK  

2. B→A: {Na, Nb, B}
aK  

3. A→B: {Nb} bK  

 
4.3 Modeling the Needham-Schroeder protocol 

 The original protocol can be easily modeled as three 
message sending actions. 

NS-1: Send(A, B, {Na, A}
bK ) 

NS-2: Send(B, A, {Na, Nb}
aK ) 

NS-3: Send(A, B, {Nb}
bK ) 

 
4.4 Verifying the Needham-Schroeder protocol  

 We formalise our assumptions, protocol steps, and 
assertions into logical formulae. At the very beginning, 
every principal knows all other’s public key, but does not 
know any private key except that of himself. 

(1) Know(A, Kb) ≡T Assumption 

(2) Know(B, Ka) ≡T Assumption 

(3) Know(I, Ka) ≡T Assumption 

(4) Know(I, Kb) ≡T Assumption 

(5) Know(A, Ki) ≡T Assumption 

(6) Know(A, Ka
-1) ≡T Assumption 

(7) Know(B, Kb
-1) ≡T Assumption 

(8) Know(I, Ki
-1) ≡T Assumption 

(9) Know(I, {Nb}
bK )≡U Assumption 

 

 Then the protocol starts. Due to symmetry, we only 
need to consider the case that the principal A initialises the 



protocol. In A’s view, he sends a message to another 
principal he wants to talk to. However, there are still two 
cases: (1) the message is sent to an honest principal, say, 
B, and (2) the message is sent to the intruder I. 

 In the first case, we can prove that the protocol can 
be carried on to the end. But this case does not explicitly 
concern the intruder, so we will not know whether the 
intruder can break the protocol. Therefore, we should 
consider the second case carefully. The following 
formulae describe the run of the protocol in this case. 

(10) Send(A, I, {Na, A}
iK )≡T NS-1 (run 1) 

(11) Rcv(I, {Na, A}
iK )≡T [3.1] (10) 

(12) Know(I, {Na, A}
iK )≡T [3.3] (11) 

(13) Know(I, {Na, A})≡T [1.2] (8)(12) 

(14) Know(I, Na) ≡T [2.2] (13) 
 

 By now, I has successfully got A’s nonce Na. He can 
then use it to produce fake message and send it to another 
honest principal B to initialise a new session, 
impersonating A. 

(15) Send(I, B, {Na, A}
bK )≡T NS-1 (run 2) 

(16) Rcv(B, {Na, A}
bK )≡T [3.1] (15) 

(17) Know(B, {Na, A}
bK )≡T [3.3] (16) 

(18) Know(B, {Na, A})≡T [1.2] (7)(17) 

(19) Know(B, Na) ≡T [2.2] (18) 

(20) Send(B, I, {Na, Nb}
aK )≡T NS-2 (run 2) 

(21) Rcv(I, {Na, Nb}
aK )≡T [3.1] (20) 

(22) Know(I, {Na, Nb}
aK )≡T [3.3] (21) 

 

 Since I cannot decrypt the message {Na, Nb}
aK , his 

only choice is to send it to A and use A as an oracle. 

(23) Send(I, A, {Na, Nb}
aK )≡T NS-2 (run 1) 

(24) Rcv(A, {Na, Nb}
aK )≡T [3.1] (23) 

(25) Know(A, {Na, Nb} aK )≡T [3.3] (24) 

(26) Know(A, {Na, Nb })≡T [1.2](6) (25) 

(27) Know(A, Nb) ≡T [2.2] (26) 

(28) Send(A, I, {Nb}
iK )≡T NS-3 (run 1) 

(29) Rcv(I, {Nb}
iK )≡T [3.1] (28) 

(30) Know(I, {Nb} iK )≡T [3.3] (29) 

(31) Know(I, Nb) ≡T [2.2] (8)(30) 

(32) Know(I, {Nb}
bK )≡T [1.1] (4)(31) 

(33) Auth(B, A, {Nb} bK )≡F [4.2] (32) 
 

 Therefore, B will not authenticate that {Nb}
bK is sent 

by A and unmodified. It indicates a flaw in the Needham-
Schroeder public key protocol. Actually, Nb is the nonce 
helping B identify A and should be kept secret from all 
other principals, especially the intruder. However, the 
inference step (31) shows that Nb has been divulged to I. 
This implies the flaw in the protocol. 

 On the contrary, in the fixed Needham-Schroeder 
public key protocol, this will not happen. The steps (1) to 
(19) are same to the above case. Steps from (20) are as 
follows.  

(20’) Send(B,I,{Na,Nb,B}
aK )≡T NS-2 (run 2) 

(21’) Rcv(I, {Na, Nb, B}
aK )≡T [3.1] (20’) 

(22’) Know(I,{Na,Nb,B}
aK )≡T [3.3] (21’) 

(23’) Send(I,A,{Na,Nb,B}
aK )≡T NS-2 (run 1) 

(24’) Rcv(A, {Na, Nb,B}
aK )≡T [3.1] (23’) 

(25’) Know(A,{Na,Nb,B}
aK )≡T [3.3] (24’) 

(26’) Know(A,{Na,Nb,B})≡T [1.2](6)(25’) 
 

When the verification proceeds to step (25), A will find 
the inconsistency between the name of I and the name in 
the received message, and he will then interrupt the 
session. 

 Therefore, Nb will not be sent out by A and divulged 
[8]. So the logical statement Know(I, {Nb}

bK ) ≡U will 
remain true. Then the inference rule 4.1 can be safely 
used and the conclusion Auth(B, A, {Nb}

bK ) will be 
achieved, indicating the correctness of the fixed protocol.  

5 Non-monotonic Property 
 Our framework is non-monotonic. The knowledge 
and belief of a principal keep changing during the process 
of inference.  

 At the beginning of a new run of a protocol, some 
assumptive statements and assertions are given. These 
statements are actually based on incomplete information, 
since at that time the protocol has not started yet and we 
do not know what will happen. Unlike monotonic 
inference, these statements and assertions do not 
necessarily always keep static in the inference. With the 
inference going on, some assertions may be changed. 



 As an example, in the verification of the Needham-
Schroeder public key protocol, I does not know B’s nonce 
Nb at first, and we assume Know(I, {Nb} bK ) ≡U in the 

step (9) of the example. After some steps, I gets the secret 
number Nb by using A as an oracle to decrypt the 
encrypted message {Na, Nb} aK . Therefore the assumption 

Know(I, {Nb} bK )≡U will not hold any longer. Instead, 

we will have Know(I, {Nb}
bK ) ≡T in the step (32) of the 

example. This shows that the temporary results could be 
“updated”. 

6 Conclusions 
 In this paper, we have presented a new framework to 
verify cryptographic protocols. The framework is based 
on many-value logic, which contains four logic values: 
true, false, inconsistent and ignorant. We have introduced 
a number of rules to describe the knowledge and belief 
states of principals and the relationships among them. 
These rules give the conditions under which the 
knowledge and belief states can be changed, and how they 
can change. We have presented the verification process of 
the simplified Needham-Schroeder public key 
authentication protocol and of the fixed counterpart 
suggested by Lowe. These examples show how to use our 
framework. 
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