
A Language for provably-complete System Specifications
Kit Grindley, John St.Quinton, Frances Stubbs

The Systematics Research Group
miexp@yahoo.co.uk

Abstract - Hitherto, the automated generation of
computer–based systems has been impeded by the lack of
a suitable specification language. Specifications written
in such a language should demonstrate three essential
characteristics: be independent of programming strategy;
be provably-complete; account for variety of output in
terms of the variety of previously supplied input, the
variety of each individual output being related to its
stimulus. This paper proposes a theory of information-
based systems, “Systematics”, and a language derived
from it, the “Systematics Specification Language”(SSL);
a language that demonstrates these three characteristics.
A Systematics specification serves as a program for
implementing an information system on a Systematics
Engine - an abstract engine having infinite memory and
instantaneous processing capability. Storage, deletion
and retrieval strategies enabling finite computers to
employ the minimum database needed to satisfy the
requirements, can be automatically deduced from
Systematics specifications. The significant implications of
Systematics to the integrity of safety critical systems are
discussed.

Keywords: System Specification, Automated
Programming, Database Design, Safety Critical Systems.

1 Background
 Information System (IS) development has been
constrained by the practical expedient of assuming a fixed
and unerring system requirement. This fallacy is
succinctly expressed by “The Fixed Point Theorem” [8]
There exists some point in time when everyone involved in
the system knows what they want and agrees with
everyone else. Practical experience demonstrates this
assumption to be false: so why do we develop an IS as a
one-time project and not as an evolving requirement?
One early clue [12]: “After 20 years, writing a lot of
programs, reading a lot more, and debugging even more
of them, my overall impression of our business is that we
are struggling, with our unaided minds, on something far
too big for us!" It is now recognised that human beings
cannot continually evolve the complex and interrelated
structural elements that underpin computer programs.
Twenty years ago, Price Waterhouse reported a backlog
of one and a half million programmer years [9]. It would
seem we have no alternative but to pretend the Fixed
Point Theorem is true. Software development now relies

predominantly upon standard programs or ‘packages’ [4].
However, software packages actually create a new
evolutionary requirement, the pursuit of technological
progress, yet fail to address the most pressing need:
evolving IS requirements.

2 The characteristics of an evolving
Requirements Specification

 The automation of programming has been advocated
as the means of continually adapting IS. Many program
generators were marketed in the 1980’s as Computer
Aided Systems Engineering ‘CASE’ tools [10]. A
computer has the potential to manipulate existing
programs, however complex, and generate amended
versions to meet changed requirements. However, a
suitable statement of requirements has to be fed to such a
program generator. A ‘suitable’ specification will include
three essential characteristics:

Freedom from Program Strategy A requirements
specification should be free from program strategy. Once
programs are manipulated automatically, the problem of
continually evolving them changes from one of ‘changing
the programs’ to one of ‘changing the requirement
specification’. The requirement specification must be free
from considering the effect of requirement change on
consequent changes to programs and program strategy.
The point was recognised and expressed by Bosak et al
[2] … the problem definition is buried in the … algorithmic
statement of the solution ...

Completeness Unless the program generator is to guess
the users’ needs, a complete requirement statement must
be provided. Completion can only be reliably achieved if
it is provable.

Variety Information systems produce outputs that differ
from each other. A requirements specification should
account for the output variety in terms of the input variety
supplied.

 CASE tools have not achieved their objective of
automating the design and production of programs so as to
satisfy a given requirement. It is suggested that the reason
for the failure in previous theories of data processing is

that they are unable to produce requirements specifications
with these three essential characteristics.

3 Systematics engines
 Systematics was proposed by Grindley as a language
for describing IS requirements independently of
implementation strategy [5], [7]. Stimulus-related output
specifications were suggested as the basis for such a
language [6]. The use of Systematics as a query language
has already been demonstrated by Sernadas [11].

 The Theory of Systematics, in conjunction with its
associated system specification language SSL, has
subsequently been developed by the current authors to the
point where any IS requirement, written in SSL, satisfies a
notional Systematics engine: an engine having infinite
storage capacity and instantaneous processing capability;
an engine in which all inputs are stored, in their order of
reception, forever; an engine in which nothing else is
stored. Systematics engines have one input channel and
one output channel, both of which can be sequentially
multiplexed. As will be described later in ‘Database
Design’, these subsequent developments also lay the
foundation for the automated generation of programs that
verifiably match their requirement specification.

 The Systematics engine concept affords the
opportunity to produce a requirement specification that
conforms to the suitability tests described, being
unencumbered by the constraints imposed by real
computers. In particular: primary keys are not required for
the identification of single items of data since each item
has a unique input or output (I/O) time; data summaries
and the results of calculations do not need to be stored
since they can be recalculated from the original input;
output requirements may be specified in terms of inputs,
since the original inputs are stored forever and are always
available as output components.

4 Systematics Theory of Information

Structure
4.1 System-time
 IS components are divisions of ‘System-time’, the
subset of time which exists at the input point and the
output point of a Systematics system, and from its
inception until its end, or, if continuing, until now.

 Inception End / Now
 Input time line

 Input point

 Output time line

 Output point

The input time line and the output time line are each a one-dimensional continuum of what is
termed ‘System-time’.
In a current system, as System-time passes, the input and output points repeat to the right of
the diagram, and the time lines increase in length.

 Figure 1. System-time

 I/O time lines are divided into separate Periods.
Separate Periods which have a recognisable type form the
Inputs and Outputs of the system. Periods with no
recognisable type are of no significance.

 Sensor Readings Sensor Readings
 Input time line
 t1 t2 t3 t4 t5

 Control Signals Control Signals

 Output time line
 t1 t2 t3 t4 t5 t6

In a control system for a nuclear reactor for example (see Section: Systematics
Specification Language), the inputs are readings from the reactor's sensors.
The outputs are signals which control the reactor's operation.
On the input time line, Periods t 2 to t 3 , and t 3 to t 4 are Inputs of the type Sensor
Readings. The Periods t 1 to t 2 and t 4 to t 5 have no type, and are not Inputs.
On the output time line, Periods t 2 to t 3 , and t 4 to t 5 are Outputs of the type Control
Signals. The Periods t 1 to t 2 , t 3 to t 4 and t 5 to t 6 have no type, and are not Outputs.
t 1 to t 2 on the input time line is a Period of input System-time and is thus different from
the Period t 1 to t 2 on the output time line which is a Period of output System-time.

 Figure 2. Priods of System-time

4.2 Resolution
 All Periods of System-time can be resolved into sets
of smaller Periods, and Instants of System-time. Instants
are the smallest recognisable divisions of System-time, and
form the limits of I/O resolution.

 Periods are termed the parent of the Period sets and
Instants they contain at the next ‘degree of resolution’.
Parents contain none, one, or many Period sets. A Period
set consists of one or more Periods of the same type.
Parents contain none, one, or many Instants of different
types.

 Period sets and Instants cannot be of the same type as
their siblings, or any ancestor.

 Instants have a value, which may be null. Periods do
not have a value.

 Inputs and Outputs are separate Periods – that is, they
have no parent.

 The size of an Input or Output is measured by the
number of Periods in its resolution.

 Sensor Readings

1° Sector Sensor Sector Sensor
2° Sector ID Sector ID

 "1" "2"
 t1 t2 t3 t4
t5

The Periods and Instants are labelled with their type. Period types are in bold. Periods
have no value. Instant types are underlined. Each Instant has a value.
The Input of type Sensor Readings is a Period of System-time, stretching from t 1 to t5.
It has no parent. At its first degree of resolution, the Sensor Readings Period contains
a set of two Periods of type Sector Sensor stretching from t 1 to t 3 and t 3 to t5
respectively.
At the second degree of resolution Sector Sensor t 1 to t 3 contains one Instant of
System-time t 2 of type Sector ID with value "1" And similarly for Sector Sensor t 3 to
t5. Only Instants are discovered at the second degree of resolution, and thus no further
resolution is possible.

Figure 3. Resolution

5 Systematics Theory of Requirement
Specification

5.1 Identification
 Period sets and Instant sets are identified by their
type. Each Period and each Instant has a natural System-
time order by which it can be identified. Systematics
engines have only one input and one output channel.
Periods and Instants are thus uniquely identified by their
type and their input or output System-time specified with
reference to a known System-time, normally that of a
Stimulus e.g.:

The last Sensor Readings
(i.e. the last before the current Stimulus)

5.2 Union-Continuum
 Periods and Instants have the property of belonging to
a resolution. Instants also have the property of value. It
follows that a closed path exists between Periods or
Instants with specified related properties. Such closed
paths are termed "joins". Any component participating in a
join may itself be joined to other components. Each join is
a closed path, therefore the combination of the two joins is
also a closed path. Similarly, a third, and any number of
joins may be added, and therefore, by induction, the
resulting chain of joins will always be a closed path. A
chain of joins identifies a Correspondent set or an Origin,
and every branch of the chain ends with a reference to the
stimulus. When each Correspondent set or Origin of the
same type is referenced to the stimulus by a necessarily
different path (see Size 5.3.3 and Value 5.3.4 and also
Variety 7 below) it is termed a Union Continuum (UC).
E.g. :
 The Sector Sensor contained in the Sensor Readings

which is the current Stimulus

5.3 Variety
 Inputs and Outputs (I/Os) exhibit four kinds of
variety: Type. The I/Os are of different types, e.g. Sensor
Readings, Control Signals, etc. ; Timing. I/Os are input
and output at different times; Size. I/Os of the same type
may contain a different number of each component type,
e.g. different Sensor Readings Inputs may contain
different numbers of Sector Sensor Periods; Values. I/Os
of the same type may contain different values e.g. the value
of Sector ID may be either "1", "2", etc.

 The four kinds of variety, Type, Time, Size and
Value, are specified as follows:

5.3.1 Variety of Type
 Every Output type has a specified Stimulus type, and
a specified Resolution Format. The first degree Resolution
Format shows the Instant types and Period set types
produced by the resolution of the Output.

 The second degree Resolution Format shows the
Instant types and Period set types produced by the
resolution of each Period set type produced by the first
degree resolution. And so on.

 Control Signals stimulated by Sensor Readings

 1° Sector (x n)

 2° Control Rod Motor (x 1)

A Control Signals Output is produced for every Sensor Readings Stimulus.
At the first degree of resolution of the Output Control Signals, a set of many Periods of type
Sector is produced.
At the second degree, one Control Rod Motor Instant is produced for each Sector Period.
Since all these components are Instants no third degree resolution is possible.

 Figure 4. Variety of Type

5.3.2 Variety of Timing
 Every type of Output is stimulated by one or more
specified types of Input, termed the ‘Stimuli’ of the
Output types. The order of Outputs of the same type is a
repetition of the order of their Stimuli.

 Sensor Readings
Input time line
 stimulates

 Control Signals
Output time line

One Output of the type Control Signals in produced when an Input of type Sensor
Readings (specified as its Stimulus type) is received.

 Figure 5. Variety of timing

5.3.3 Variety of Size
 The size of a stimulated Output corresponds to the
size of a specifically assembled Stimulus Reference

Structure, consisting of sets of previously input Periods,
which maps onto the Output. Each input Period set
corresponds to a stimulated output Period set and is
termed the output set’s ‘Correspondent Set’. Each input
Period corresponds to a stimulated output Period and is
termed the output Period’s ‘Correspondent’.

 Each Stimulus Reference Structure is headed by the
Stimulus of its associated Output. First-degree
Correspondent Sets are specified by a UC with reference
to the Stimulus. Second-degree Correspondent Sets are
specified by a UC, with reference to their first-degree
Correspondent. And so on. Every Correspondent Set is
thus ultimately referenced to the Stimulus.

 A set size specification is given for each Period type
in the Output Resolution Format.

Output Resolution Set Size Stimulus Reference Associated Output
 Format Specification Structure Periods
 Control Signals The Stimulus Sensor Readings → Control Signals

1° Sector The Sector Sector Sensor → Sector (1)
 Sensor(s) (t 1 to t 3)
 contained in Sector Sensor → Sector (2)
 the Stimulus (t 3 to t 5)

 The above example continues the specification of the Output Control Signals whose
Resolution Format, Stimulus type and timing were specified in Figures 4 and 5, and for the
Sensor Readings shown in Figure 3.

The first set size specification is always “The Stimulus”. In the above example this
specification produces a Sensor Readings set of one Correspondent.

The specification of each first-degree Correspondent Set always produces a single set.
First-degree specifications always refer to the Stimulus. In this case there is one Set Size
Specification, selecting the Sector Sensor Periods contained in the Stimulus. Two Sector
Sensor Periods are selected.
 The specification of second-degree Correspondents always produces one set for each
first-degree parent Correspondent Period, and always refers to the first-degree parent
Correspondent. In this example there are no second-degree Period sets.
 When the Stimulus Reference Structure is assembled, it is mapped onto its associated
output Periods, thus determining the Output’s size. Since one Correspondent Sensor
Readings input Period is selected, one Control Signals output Period is produced. Since
two Correspondent Sector Sensor input Periods are selected, two Sector output Periods
are produced.

 Figure 6. Variety of Size

5.3.4 Variety of Value
 The value of each output Instant is a specified
function of the value of one or more specified input
Origins. Since each discovered Period in a resolution
contains a single Instant of any given type, the
specification must result in a single value. Origins are
previously input Instants. Each Instant type in an Output
Resolution Format has its Origin specified by a UC with

reference to its parent Period's Correspondent, and thus
ultimately to the Stimulus.

 Output Resolution Format Value Specification
 Control Signals
 1° Sector
 2° Control Rod Motor = function of Temperature contained in
 parent 's Correspondent.

The value of Control Rod Motor is specified as a function of the value of an Origin. The
Origin is specified as the Temperature Instant in the parent Sector's Correspondent.
Since the Sector Correspondent was specified with reference to the Stimulus (see
Figure 6), the value of Control Rod Motor is also specified with reference to the
Stimulus.

 Figure 7. Variety of Value

6 Systematics Specification Language
 For brevity, the Systematics Specification Language
(SSL) will be described by means of a worked example:
specifically an SSL specification for a program to control
a nuclear reactor.

 In the reactor core, uranium atoms decay, releasing
neutrons which bombard other uranium atoms, causing
them in turn to decay, thus setting up a chain reaction.
This process releases energy, which heats the core. The
temperature of the core is monitored; if it becomes too
high, boron control rods are lowered into the core, to
absorb neutrons and thus slow down the chain reaction.
The core is divided into sectors. Each control rod is raised
or lowered according to the temperature of that sector, and
the current position of the rod. If the temperature reaches a
danger level, all the control rods are released, and drop
under gravity into the core, stopping the chain reaction
and closing down the reactor completely; the ‘Emergency
Shutdown’.

 In this simplified example, the system produces two
outputs: Control Signals, sending control signals to control
rod motors in response to sensor readings from the reactor,
and Management Report, which periodically reports
statistical data from the reactor.

 The Systematics Specification Language (see Figure
8) consists of a graphic syntax giving a ‘picture’ of the
Outputs, combined with a Union-Continuum which adopts
a linear syntax to specify each output element.

 Period / Instant Correspondent / Origin Union-Continuum

1. Control Signals Sensor Readings Š
2. Emergency Shutdown ƒ1(Temperature) \ Ç1
3. 1 Sector Sector Sensor \ Ç
4. Sector ID Sector ID \ Ç
5. 1.1 Control Rod Control Rod Sensor \ Ç
6. Control Rod ID Control Rod ID \ Ç
7. Control Rod Motor ƒ2(Temperature, \ Ç1

 Control Rod Position) \ Ç

Figure 8 (a). SSL Specification for Nuclear Reactor Control System. (Control Signals Output)

.

 Period / Instant Correspondent / Origin Union-Continuum

8. Management Report Period End Š
9. Date Date \ Ç
10. 1 Sector Sector Sensor \ Sensor Readings [last before Š]
 / different Sector ID
11. Sector ID Sector ID \ Ç
12. AvTemp Average(Temperature) \ Sector Sensor \ Sensor Readings [since previous Š]
 / Sector ID = Sector ID \ Ç
13. OptTemp Optimum Temperature \ Sector Data [last before Š] / Sector ID = Sector ID \ Ç

 Figure 8 (b). SSL Specification for Nuclear Reactor Control System (Management Report Output)

6.1 Period/Instant column
 The first column shows, by indentation, the
Resolution Format of Outputs of a given type.

 An index number shows the resolution level: 1, 1.1
etc. Period Types are in bold; Instant types are
underlined.

 In Figure 8, each Output of the type Control Signals
contains an Instant of type Emergency Shutdown (line 2)
and, at the first level of resolution (1), a set of Periods of
type Sector (line 3). Each Sector Period contains an
Instant of type Sector ID (line 4) and, at the second level
of resolution, (1.1), a set of Periods of type Control Rod
(line 5). And so on.

6.2 Correspondent/Origin Column
 The second column shows the Correspondent type
for each output Period type.

 The Correspondent of the Output is always the
Stimulus.

 In Figure 8, every Control Signals Output is
stimulated by a Sensor Readings Input (line 1). At the
first-degree of resolution, the Correspondents of Sector
Periods are Periods of type Sector Sensor (line 3). At the
second-degree of resolution, the Correspondents are
Periods of type Control Rod Sensor (line 5).

 The second column also shows each Instant type in
the Output hierarchy as having a value equal to a function
of one or more input Instant types, termed its ‘Origins’.

 In Figure 8, the value of a Sector ID output Instant is
equal to the value of an input Origin of type Sector ID
(line 4). The value of an Emergency Shutdown output
Instant (line 2) is a function, ƒ1, of input Instant Origins of
type Temperature. (The nature of the function, ƒ1, is not
shown here, although of course it would have to be
specified.)

6.3 Union-Continuum Column
 The third column shows the Union-Continuum that
identifies each Correspondent set and each Origin. At the
lowest level, the Correspondent is the Stimulus Š. At each
degree of resolution the UCs link Correspondent sets and
Origins to the parent Correspondent, Ç, and thus,
ultimately, to the Stimulus.

 Periods may be identified by their System-time,
shown in italics in square brackets, [] .

 Sensor Readings [last before Š]
in Figure 8, line 10, identifies the last Sensor Readings
Period input before the System-time of the Stimulus.

 Periods may be identified by the value of the Instants
they contain. "/" means "containing".

Sector Data [last before Š] / Sector ID =
in Figure 8, line 13, identifies the last Period of the type
Sector Data containing an Instant of the type Sector ID
with a particular value.

 Instants are identified by the identified Periods which
contain them. "\" means "contained in".

Temperature \ Sector Sensor
in Figure 8, line 12, identifies the single Instants of the
type Temperature contained in each of the identified
Periods of the type Sector Sensor.

 Unions continue until the Stimulus, Š, is reached, -
hence, ‘Union-Continuum’.

Sensor Readings Š
in Figure 8, line 1, identifies the Sensor Readings Period
which is the Stimulus itself.

 UCs may refer to the Correspondent, Ç, which in turn
refers to the Stimulus.

Sector ID \ Ç
in Figure 8, line 4, identifies the Sector ID Instant
contained in the Correspondent. The Correspondent, in
this case, is a Sector Sensor Period, which, in turn, is
specified as contained in its own parent Correspondent,
which is the Stimulus.

 UCs may refer to Correspondents at different levels
of resolution, whose Correspondents in turn have UCs
linking them to the Stimulus.

Temperature \ Ç1
in Figure 8, line 2, identifies Instants of the type
Temperature contained in the Correspondents at level 1.
These are Sector Sensor Periods (line 3).

 Union-Continua may occupy more than one physical
line, and may employ parentheses to avoid ambiguity.

7 Systematics Specifications Satisfy the

Essential Characteristics
 Three characteristics of a requirements specification
from which programs can be generated automatically have
been identified. Systematics theory enables specifications
having these characteristics to be written.

Freedom from Program Strategy A Systematics
requirement specification is free from program strategy –
most noticeably: inputs and files are not specified. No use
is made of primary keys. No purging strategies or
summaries of inputs are proposed to minimise the size of
the database.

Completeness Completeness in a Systematics system is
defined as meaning that every variable aspect of an
Output: type, size, System-time and value, is determined
from variable aspects of stimulus-related Inputs. It has
been shown by induction that: Every variable aspect of an
Output is linked, by a closed path ‘Union- Continuum’ to
its Stimulus. It follows that the automatic, or manual,
navigation of the specification, from output to stimulus,
can test for closure.

Variety Output type, and the Period types and Instant
types in the resolution of periods of that type, are specified
for Stimulus type (see Figure 8). The System-time of an
Output is determined by the System-time of its Stimulus
(see Figure 5). The Requisite Variety (RV) of size is that
the sizes of output period sets of the same set-type are
potentially different. This is ensured by union-continua
which select each correspondent period set with reference
to the correspondent of its output’s necessarily different
parent (see Figure 6). Similarly, the RV of value is that the
values of output instants of the same type are potentially
different. This is ensured by specifying the selection of
each origin with reference to the correspondent of its
output’s necessarily different parent (see Figure 7). The
germ of variety in the Output’s Stimulus is thus
differentiated throughout the Output structure, limited
only by the variety contained in all the Inputs ever
received.

 A reformulation of Ashby's Law of Requisite Variety
[1] expresses the basis of Systematics.

The Law of Requisite Variety – Systematics form

The larger the variety of continuum-located inputs
available to an information system, the larger the variety
of outputs it is able to produce.

8 Database Design
 Since a Systematics specification describes Outputs
in terms of Inputs, the inputs, which form the infinite
database of a Systematics engine, can be deduced from it.
This infinite database can be reduced to a practical size by
the automatic deduction of storage and purging rules from
a Systematics specification.

8.1 Removing unnecessary Periods and

Instants
 Periods and Instants required only to produce the
Output they stimulate need not be stored.

Control Rod Position \ Ç
Control Rod Position (Figure 8, line 7) contained in the
Correspondent Control Rod Sensor Period, which in turn
is contained in its parent Correspondent Sector Sensor
Period, which is contained in the stimulating Sensor
Readings Period, is referred to nowhere else in the
specification, and so need not be stored.

 Function parameters need not be stored if an updated
result is stored each time a parameter is input.

 AvTemp = Average(Temperature) \ Sector Sensor \
Sensor Readings / Sector ID =

 The number of Temperature Instants, and the sum of
their values, can be stored, together with the identifying
Sector ID Instant, each time a Sector Sensor \ Sensor
Readings Period is input. The Sector Sensor Periods
need not be stored. (Figure 8, line 12)

 If the last Period containing each value involved in a
specified join is the only one required, only that one need
be stored.

 Optimum Temperature \ Sector Data [last before Š] /
Sector ID

Only the last Optimum Temperature \ Sector Data, for
each different value of Sector ID, needs to be stored.
(Figure 8, line 13)

8.2 Removing unnecessary Correspondents
Specified Correspondent Periods may be removed when
their selection is no longer possible.

 Sensor Readings [since previous Š]
Since Sensor Readings Periods prior to the previous
Period End Stimulus are never referred to, they can be
removed when a new Period End Stimulus is received.
(Figure 8, line 12)

 The instantaneous search capability of the abstract
Systematics engine can be compensated by indexing
stored Periods by the Instants involved in a specified join.
In this way, primary keys are deduced for Periods
containing Origins, and secondary keys are deduced for
Periods selected as Correspondents.

9 Applications of Systematics
 SSL overcomes a major problem associated with
current methodological and programming techniques used
for the development of Safety Critical Systems - Design
Revisions. Budgetary constraints and delivery deadlines
can erode the full integrity of an evolving system
specification. With SSL, the regeneration of a modified
specification invokes the same completeness criterion that
was applied to the original proven version: the Union-
Continua will either be complete, or incomplete.

 SSL does not involve Expert System rules nor is it
dependant on the interpretation of an arbitrarily complex
text-based methodological procedure such as SSADM [3].
SSL is based on formal logical completeness: the
completeness of the union of data contained within
information sets existing between Output and Input(s).
Manual or Auto-Navigation between the data requirement
for each specified Output and the associated specified
Input(s), highlights: redundant inputs, data inadequacies
and ill-supplied derivatives.

 An SSL specification for a system can either be
written in its entirety or as a skeletal functional
specification for an SSL system-generator incorporating
auto-navigating Union-Continuum search procedures.
Any functional system can be specified by SSL, including
1st and 2nd order Cybernetic systems. Creating compound
interactive systems involves no more than the iterative
application of SSL and O/I matching.

 Fundamentally, SSL specifications describe
requirements assuming they are to be satisfied by a
Systematics Engine with infinite storage, and where all
Inputs are remembered forever. The identification methods
proposed in SSL for such infinite time-series enable rules to
be applied to the specification which reduce the stored
information to the minimum required to satisfy the output
requirement. This enables the automatic design and revision
of application databases, which is the only remaining
barrier to the automatic generation of computer programs.

 Automated database design, and the implementation of
SSL as an automated system-generation tool are the current
tasks of the Systematics Research Group.

References
[1] Ashby, W.R (1956) An Introduction to Cybernetics,

Chapman and Hall

[2] Bosak, R. et al (1962) An Information Algebra, Comm
ACM. Vol 5. No 4

[3] Clare, P. Coe, I. Downs, E. (1992) Structured System
and Design Method, Prentice Hall

[4] Compass (1998) Proportion of Systems Represented by
Packages, Survey by Compass.

[5] Grindley, C (1966) Systematics - a Non-programming
Language for Designing and Specifying

 Commercial Systems for Computers,
Computer Journal, Vol 9, pp 124 - 128

[6] Grindley C., Stevens, W (1972) Principles of the
Identification of Information, Proc. FILE ’68

[7] Grindley, C (1975) Systematics - A New Approach to
Systems Analysis, McGraw-Hill

[8] Paul, R.J (1994) Why Users Cannot ‘Get What They
Want’, International Journal of Systems Design,

 Vol 1, No.4.
[9] PW (1986) Major Issues, Information Technology

Review (pub Price Waterhouse)
[10] PW (1989) CASE for improvement, Information

Technology Review (pub Price Waterhouse)
[11] Sernadas, A (1981) Systematics: Its Syntax and

Semantics as a Query Language (1) and (2),
 Computer Journal Vol 24, (No 1

February, No 2 May)
[12] Weinberg, G (1971) The Psychology of

Programming, Van Nostrand Reinhold

