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Abstract—In this paper we present a solution to human-
robot interaction using a combination of visual and laser
range information. Human legs are extracted from a laser
scan and, at the same time, faces are detected from the
camera’s image. The information is integrated in a detection
procedure that returns direction and distance of the sur-
rounding people. This is eventually used by a mobile robot
to approach and start interaction with humans. Unlike other
similar applications, our solution works well in real-time even
under limited computational resources. Experimental results
show good performances of our system.

Index Terms— human-robot interaction, multisensor inte-
gration, people detection.

I. INTRODUCTION

Recently many researchers have focused their work on
the social aspect of mobile robotics, in which humanig. 1. Laser scan. The black line is the original laser output, the purple
detection and tracking is an essential prerequisite ftjye is the output after filtering. In the middle we can notice the legs of
. . . a person (picture above).
human-robot interaction (HRI). Indeed, the first step for

a social robot to start any kind of interaction with people

IS 't\)/lemg pr:e to detelct_and approafh themﬁ bl detect faces and legs even when both the robot and a
any different solutions to resolve such problem arserson are moving. Moreover, the need of computational
reppr_ted, mgludlng the use of artificial marks and “gh.'ower is dramatically reduced and we do not make use
emitting devices [1], [2]. Although these systems are quilg; ;. 4 ditional hardware dedicated to image processing.
efficient, the drawback is that the human to be track e system is implemented on our mobile robot ATLAS
has to ca:_ry an attractc;r det\; 'C,e ' Onbthe dother hanf hich is provided with a SICK laser range sensor and a
many  app |cafuons use the ro ots_ on-board camera 187 -amera. ATLAS is an interactive robot that acts as a
people detection, often concentrating on the face [3], [/[%ur-guide inside the County Hall building in London.

or other regions of the h“”.‘a” pody [5]. Others mal_<e The rest of the paper is organized as follows. Sections
use of laser range sensors, identifying people as mowng Il and IV illustrate our approach, including some

objects [6], [7]. Some researchers have worked on*multizc, o ation about the practical implementation. Some
xperimental results are presented in Section V and a brief

modal” systems, in which visual data is combined witlé
laser range data [8], [9], [10], [11] or thermal images datQ.Jmmary and future extensions are given in Section VI.

[12] to enhance human detection and tracking performance
of the system. In several cases, speech recognition is also
integrated only with vision [13] or with both vision and
laser data [14], [15], [16]. The laser range sensor provides a °1&@an of the

It is clear that in all the advanced approaches, or at leastvironment at approximately forty centimeters from the
most of them, image and video processing are essenflabr and with a half degree resolution. It is known that
components. In particular, it is very important to develofaser readings are very accurate and the error is in the
cost-effective face detection algorithms to achieve readfrder of millimeters. In Fig. 1 we can observe the output
time performances [17], [18], [19], [20]. of a laser scan in presence of a person.

In this paper, vision and laser data are combined to The laser range data can be represented as a func-
detect face and legs respectively. Compared to other siien on a XY graph in which the abscissa is the an-
lar methods [8], [9], [11], [15], we achieved significanigle and the ordinate is the measured distance. In the
improvements. Our application is able to continuouslgimplest case, the characteristic pattern of two legs is

Il. LEGS DETECTION



TABLE |
5,000 ‘ ‘ w w w LEGS DETECTOR ALGORITHM

{filtering}

for i=1t0o LASER.DATA_SIZE do
d; < filter d; with (1)

end for

4,000

3,000

{pattern recognitioh
P <= @ {set of legs patteris
S < di {current sequenge
for i =2t0 LASER.DATA_SIZE do
if (d; is a max.)Vv (d; is a min.)then
if d; and the last element & satisfy (3)then

addd; to S

if S contains5 elementshen

0 ; ; ; ; ‘ add S to P {new candidate patte}n

0 30 60 90 120 150 180 end if
Direction of scan [deq] else if cZiA is a max.then
S < d; {reset the sequenge

Fig. 2. Typical legs’ pattern, identified by the sequence of paitis— end if
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constituted by a sequence of alternate maximums andbr all S € P do
minimums of the distance function following this order:  if S does not satisfy (4)hen
max — min — max — min — max (@n example is enr(;ari?oves from P
shown in Fig. 2). The algorithm used to detect possibleend for
legs is based on this simple concept and can be divided

in the following three steps:

« First of all, some noise is removed from the laser data = {dn,dn41, ..., dnyr } for which:
with a simple moving-window filter. A threshold is o
also used to limit the maximal range. The purple line d; — di+1‘ <e€
in Fig. 1 shows a typical result. withi=hh+1,...,h+k—1
e Then, all the minimums and maximums of the
distance function are extracted, memorizingvherek is the number of consecutive duplets for which
at the same time those particular sequencésvalid the expression above. Then, we simply take the
that could identify two legs, as shown inpointd, /. in the middle of the sequence as minimum
Fig. 2. or maximum. Note that (2) means we consider all the
« Finally, some basic rules are applied to discard seegments with inclination less than Although a little
guences that are not legs patterns. Basically, thesrigh, this approximation permits a very fast computation
rules take into account the inner distance betweavith a sufficient precision for our task. The valaenust
human legs (e.g. a legs aperture of 3 m would b#t be too big, in which case we could miss some local
definitely impossible!). minimum or maximum, and not too small, thus to avoid

More specifically, here is a detailed description of thedbe effect of residual “noise” left by the previous filter. We
steps. First, the implementation of the moving-windo{Punde =5 cm to be a good compromise.
filter, which smooths the laser data, can be described as'he distinction between minimum and maximum is
follows. If Af is the angle step of the laser scan angimply deducted from the fact that one always follows the

d(i- AB) = d; is the distance measured along the directiopther (there cannot be two consecutive minimums!). When
i- A, we can write the filtered valué; as follows: a maximum or minimum is extracted, the algorithm checks

if this contributes to reconstruct a possible legs pattern. In
) practice, it tries to identify a sequence of points frétnto

Pg, like shown in Fig. 2, respecting the following vertical

constraints:

)

1 i+N

di - 2N +1 n:;Ndn

where2N +1 is the size of the moving-window filter, with

a window size of5 (N = 2) empirically determined. The dp, —dpy > Leay

maximal distance is limited to 4 m. dpe —dpg > Lint 3)
The next step is identifying sequences of minimums dp, —dpy, > Lint

and maximums of the distance function, as shown in dpy —dp, > Leat

Fig. 2, which could be possible legs patterns. Such points

correspond of course to the angles for which the derivativéhereL.,; = 20 cm andL;,; = 50 cm in our application.

of the distance function is null. In practice, to extract such Finally, a last control is applied to discard improbable
points from our samples, we consider all the sequendegs patterns, excluding all the cases where the distance
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Fig. 3. Set of Haar-like features for face detection. The total amount
of features contained in 24 x 24 window is about120000.

Fig. 4. Attimet = 0, the whole image320 x 240 is scanned, with
a minimum face size 020 x 20 pixel (small gray square on the right).
The bounding box of the detected face (red squardpisx 45.

TABLE Il

FACE DETECTOR ALGORITHM

if no face trackedhen
min. face size< 20 x 20
scan the whole image
else {tracking}
min. face size<= 80% of the tracked face
sub-image size= twice the tracked face
scan the sub-imago centered on the tracked face
end if

Fig. 5. Attimet = 1, the scan covers only a sub-ima@@ x 90 (blue
square in the previous image), looking for faces not smaller 86axn36
pixel (80% of the previous face).

between two adjacent legs is too big: and computational speed. It is also worthwhile specifying

|IPp — P < Dstep (4 th_at this mgthod is color independent,. the.refore ad.a}pt for
different skins and more robust to varying light conditions.
Considering that the laser device is about at forty cen-Briefly, the face detection algorithm of [18] and [19]
timeters from the ﬂOOf, a gOOd value for such limit iSNorks as follows. Using a cascade of pre_trained clas-
Dsiep = 50 cm. The pseudo-code of the procedure fosjfiers, it extracts Haar-like features from subwindows
legs detection is summarized in Table I. of the image. The set of features is illustrated in
Thanks to the precision of the SICK laser data, the legsg. 3. Each classifier rejects bad input samples operating
detector permits to know the position of the surrounding discrimination on the output samples of the previous
people with great accuracy. Of course there are cas@sssifier. Two important parameters that influence the
where it is almost impossible to distinguish legs from othejpeed of the algorithm are the resolution of the image
objects, for example because of their position with respegd the minimum size of the sub-windows, which is the
to the robot (e.g. one leg covered by the other) or Simpiinimum size of the searched faces.
because the people is too close to a wall. In these situationsrg increase the performance of our face detection
the face detector, explained in the next section, playsp@dule, we implemented a simple and fast face tracking
fundamental role. algorithm with an adapting regulation of the parameters. In
practice, at the beginning we scan the whole image, which
[1l. FACE DETECTION is 320 x 240 in our case. If one or more faces are detected,

Face detection is a very difficult task because involvéée choose the closest one. At the next time step, for the
many challenging issues. Some of these are pose, preseifcd! We consider only the sub-image containing the face.
of structural components (like beards, glasses, etc.), faci¥f found a good solution taking a sub-image double the
expression, occlusions, image orientation and environmetze of the face. At the same time, we modify the minimal
tal conditions (e.g. light). In our application we make us&ize of searched faces, setting this parametg016 of the
of a recent object detector system [18], which is a refinédiirent face size. Fig. 4 and Fig. 5 show an example of
version of the broadly known algorithm created by Viol&OW the tracking works. _

& Jones [19]. Such system is already implemented andWith this method we obtain two important results:
trained for face detection iDpenCV[21], the computer « First, we increase significantly-4 times) the face
vision library we adopted. Compared to the numerous detection speed, of course provided some face is
solutions illustrated in literature [17], the chosen one actually present;

shows a good balance between detection performances Second, we keep track of one face as long as it can
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Fig. 6. Flowchart of the detection program. The information from th&ig. 8. Scheme of the application that integrates people detection with
laser legs detector, more reliable, has the priority on the face detectahe other modules. Each block is a thread, all controlled by the supervisor.

be detected, avoiding cases where the face of interest, . i i
changes continuously (e.g. when two faces are at twiuch is the area inside where the human-robot interaction
same distance and the selection method tries to Ch(ggrts.

the closest).

Table Il illustrates a simplified version of the algorithm IV. HYBRID IMPLEMENTATION
to detect and track a face. Like the legs detection moduleAt the current stage, the combination of the two mod-
described in Section I, the face detection module cares, legs and face detection, is simple but efficient. In
also return the position of a person with respect to th@actice, we realized experimentally that the laser based
robot. Indeed, being known the field of view (FOV) of thdegs detection is very accurate and in most of the cases
camera, the direction of the person is simply proportiona&d much more reliable than face detection. Moreover, the
to the horizontal position of his face inside the imageomputational time needed by the legs detector is much
The calculus of the distance instead is more complicatéeks than that one required by the face detection module.
and, in absence of a stereo camera, is normally resolW& decided then to give priority to the information coming
using dynamic vision techniques, like depth from motiofrom the laser and use the face detection only when the
[22] or depth from focus [23]. However, these method®rmer does not detect any person. Our choice is supported
normally require the people to be nearly static, whichlso by the fact that the range covered by the laser device is
is not our case. We chose then a more naive approaofych wider than the camera view. While the laser covers
fast and good enough for our pourposes. To each fagesemicircular area with a radius of several meters, the
indeed is associated a bounding box (see Fig. 4), the st@mera view is limited to approximatelo°. Also, even
of which changes with the distance. We use a simpikthe camera is fixed at about 1.5 m from the floor (which
conversion factor, determined empirically from the heighs an average of the people height), there are cases when
of the bounding box at fixed distances of the face. Usirgyface cannot be detected because the person is too tall or
the position of the face in the image and the size #bo short and very close to the robot.
its bounding box, we can therefore calculate roughly the The flowchart of the detection program is illustrated
location of the person with respect to the robot. Of coursim, Fig. 6. First, the legs detector is interrogated and, if
while the direction is quite precise, the error of the distan@y person is found, direction and distance of the closest
is considerable. Nevertheless, in our experiments it hase are recorded. In case no legs are detected, the control
been proved to be reliable enough within a range of 2 rpasses to the face detector and if it succeeds, it provides



Fig. 10. Person too close to the wall. The legs pattern searched with
a laser scan, on the right, can be confused with other objects in the
environment. The face detector helps to resolve the confusion.

Fig. 11. Legs too close to each other. Instead of two columns, the laser
shows just one big column. Even in this case, the face detector helps to

Fig. 9. Approaching a human. In the sequence we can see the dete¢ggplve the ambiguity.
face on the left and the relative laser legs detection on the right. ATLAS
stops in front of the human (last snapshot) to start the interaction.

interface is also available to show visual information to
the user or get input through the touch-screen.
the position of a tracked face. Otherwise the procedure
simply restarts. V. EXPERIMENTAL RESULTS
_OurrobotATLAS is an ActivMedia PeopleBot equipped_ Most of the experiments have been conducted in a
with a SICK laser range sensor, a PTZ camera, aui@rridor and a foyer of the County Hall in London.
system and a touch-screen (see Fig. 7). The on-boaffle environment is a very good test-bed for interactive
computer is a Pentium Ill 800 MHz with 256 MB of (gpots like ATLAS. First of all, the wide space permits
memory, running Linux operating system. The camera hggyeral people to interact with the robot at the same
been mounted on a special support to increase the heighfe Furthermore, the light condition is very challenging

of its view, which is now about 1.5 m. This permits iNyecayse varying from artificial to natural illumination.
general better performances when detecting faces.  Fig. 7 shows part of the wide foyer.

The software has been realized with a modular ap-
proach. The legs and the face detectors have been thou,ﬂhtExample of approach

as “virtual” devices that can independently return direction ] .
and distance of detected people. Such detectors are part df the first experiment, we report a successful approach

a library that can be expanded with additional functionafchieved by ATLAS using both laser and vision data. In
ities (e.g. motion or sound detectors). Fig. 9 we show a sequence of three snapshots taken during

Furthermore, the detection thread is part of a mofd human approach. Both face and legs are continuously

complex application that involves navigation, conversatiotﬁaCked_ while the robot is moving toward the person
pproximately at 30 cm/s. The update speed of the legs

and web-interface, thus to provide a full interactive rob A e
tection module, about 6 Hz, is limited only by the

guide. In Fig. 8 we can see a scheme of the who d d th ; f d
application. Every module is an independent thread, t,@r ware and the Operating System. Of course, due to

main one being the supervisor, which controls all thi"39¢ processing, the sp_eed of the face detector is lower,
others using a FSM approach. A thread is also dedicated'fod/€"a9€ 3 Hz. When it reaches a person at a proper

the sensors, keeping the data up-to-date and synchronizﬁﬁyame for interaction, the robot stops (last snapshot of
the access to the input devices thé sequence). We can also note that, during the second

More in detail, the detection module provides the na\?-nd third time-steps, the laser detects another person on
' the left, who is not visible from the camera.

igation with the position of humans and leaves it th
task to approach them avoiding obstacles. The detection

also informs the conversation module on the presenBe Failure of the legs detector

of people, so that the latter can attract them or start anMost of the times the laser is sufficient to detect a
interaction when close enough. At this stage, the weperson. However, there are cases for which it is impossible
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Fig. 13. Approach and interaction. In the sequence, ATLAS detects the

person and approaches him (frame 1-3). After that, they interact using
eech and the touch-screen (frame 4-5). Finally, when the interaction
minates, ATLAS turns and moves away (frame 6).

Fig. 12. Approaching a moving human. ATLAS detects a person who
walking and getting closer. Therefore it turns right and approaches h
for interacting.

to distinguish and recognize legs in the environment. . Interaction
this section we show a couple of typical examples where . . .
the legs detector fails but, thanks to the integration with theThe main task of ATLAS is to welcome the visitors

face detection, the robot is still able to identify a humaﬁe.nterlng the County Hall's foyer. This consists in detect-

In Fig. 10 we can see a situation where the person I and approaching the people, greeting them and, if

. they desire, providing them with some useful information
approach is too close to a wall, so that the legs patter o : }
. : o . -about the current exhibition. The interaction can last
is not clearly identifiable. In particular, such pattern i

. ; . . Fom a few seconds to a few minutes, depending on
discarded by the constraints (3) and (4) given in Sectmme interest of the user. To communicate AT?AS sr?ows
Il. In Fig. 11 instead the legs are too close to each oth : '

LS ) ! ; ?—ETML pages synchronized with speech, getting feedback
looking like a single column (this could easily happen aIsP . .
. . : ) rom users through simple yes/no answers and with the
if the person is a lady with a long skirt). .
touch-screen. In Fig. 13, we show a complete sequence
of detection, approach, interaction and leave. The video
with this and other performances is available online at

Often people are not just statically waiting for the robagt://privatewww.essex.ac. thbello
to reach them, but prefer to move towards it looking

for some interaction. We show that ATLAS can actually

handle this kind of situations and approach humans even V1. CONCLUSIONS AND FUTURE WORK

when they are walking to get close. In Fig. 12 there is an

example where a person, on the right side of the robot, isThis paper presents a novel human detection system

walking torwards it. ATLAS detects the human legs usinghat integrates the information coming from a laser legs

the laser, then it turns and starts to approach the pers@atector and an visual face detector. The way to recognize

who in the meanwhile is getting closer and closer. Finallj typical human legs pattern from range information

they both stop in front of each other at a proper distan@®d how to speed up the face detection with tracking

to start the interaction. are explained. The results show that the system can be
We must point out that, during most of the action, theuccessfully used on a mobile robot to interact with people

face is out of the camera view, so the laser is the onig real time.

device ATLAS can rely on. Eventually, when the personis In our future work we would like to use the pan-tilt

approximately in front of the robot, the face detector coulcthovement of the camera to track people while the robot is

also help the tracking. This suggests that an additional paneving. Probability methods will be investigated in order

tilt control of the camera would be preferable. to improve the robustness and fault tolerance.

C. Approaching a moving human
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