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Abstract— In this paper we present a solution to human-
robot interaction using a combination of visual and laser
range information. Human legs are extracted from a laser
scan and, at the same time, faces are detected from the
camera’s image. The information is integrated in a detection
procedure that returns direction and distance of the sur-
rounding people. This is eventually used by a mobile robot
to approach and start interaction with humans. Unlike other
similar applications, our solution works well in real-time even
under limited computational resources. Experimental results
show good performances of our system.

Index Terms— human-robot interaction, multisensor inte-
gration, people detection.

I. I NTRODUCTION

Recently many researchers have focused their work on
the social aspect of mobile robotics, in which human
detection and tracking is an essential prerequisite for
human-robot interaction (HRI). Indeed, the first step for
a social robot to start any kind of interaction with people
is being able to detect and approach them.

Many different solutions to resolve such problem are
reported, including the use of artificial marks and light-
emitting devices [1], [2]. Although these systems are quite
efficient, the drawback is that the human to be tracked
has to carry an “attractor” device. On the other hand,
many applications use the robot’s on-board camera for
people detection, often concentrating on the face [3], [4]
or other regions of the human body [5]. Others make
use of laser range sensors, identifying people as moving
objects [6], [7]. Some researchers have worked on“multi-
modal” systems, in which visual data is combined with
laser range data [8], [9], [10], [11] or thermal images data
[12] to enhance human detection and tracking performance
of the system. In several cases, speech recognition is also
integrated only with vision [13] or with both vision and
laser data [14], [15], [16].

It is clear that in all the advanced approaches, or at least
most of them, image and video processing are essential
components. In particular, it is very important to develop
cost-effective face detection algorithms to achieve real-
time performances [17], [18], [19], [20].

In this paper, vision and laser data are combined to
detect face and legs respectively. Compared to other simi-
lar methods [8], [9], [11], [15], we achieved significant
improvements. Our application is able to continuously

Fig. 1. Laser scan. The black line is the original laser output, the purple
line is the output after filtering. In the middle we can notice the legs of
a person (picture above).

detect faces and legs even when both the robot and a
person are moving. Moreover, the need of computational
power is dramatically reduced and we do not make use
of any additional hardware dedicated to image processing.
The system is implemented on our mobile robot ATLAS,
which is provided with a SICK laser range sensor and a
PTZ camera. ATLAS is an interactive robot that acts as a
tour-guide inside the County Hall building in London.

The rest of the paper is organized as follows. Sections
II, III and IV illustrate our approach, including some
information about the practical implementation. Some
experimental results are presented in Section V and a brief
summary and future extensions are given in Section VI.

II. L EGS DETECTION

The laser range sensor provides a 180° scan of the
environment at approximately forty centimeters from the
floor and with a half degree resolution. It is known that
laser readings are very accurate and the error is in the
order of millimeters. In Fig. 1 we can observe the output
of a laser scan in presence of a person.

The laser range data can be represented as a func-
tion on a XY graph in which the abscissa is the an-
gle and the ordinate is the measured distance. In the
simplest case, the characteristic pattern of two legs is
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Fig. 2. Typical legs’ pattern, identified by the sequence of pointsPA →
PB → PC → PD → PE .

constituted by a sequence of alternate maximums and
minimums of the distance function following this order:
max → min → max → min → max (an example is
shown in Fig. 2). The algorithm used to detect possible
legs is based on this simple concept and can be divided
in the following three steps:

• First of all, some noise is removed from the laser data
with a simple moving-window filter. A threshold is
also used to limit the maximal range. The purple line
in Fig. 1 shows a typical result.

• Then, all the minimums and maximums of the
distance function are extracted, memorizing
at the same time those particular sequences
that could identify two legs, as shown in
Fig. 2.

• Finally, some basic rules are applied to discard se-
quences that are not legs patterns. Basically, these
rules take into account the inner distance between
human legs (e.g. a legs aperture of 3 m would be
definitely impossible!).

More specifically, here is a detailed description of these
steps. First, the implementation of the moving-window
filter, which smooths the laser data, can be described as
follows. If ∆θ is the angle step of the laser scan and
d(i ·∆θ) ≡ di is the distance measured along the direction
i ·∆θ, we can write the filtered valuêdi as follows:

d̂i =
1

2N + 1

i+N∑

n=i−N

dn (1)

where2N +1 is the size of the moving-window filter, with
a window size of5 (N = 2) empirically determined. The
maximal distance is limited to 4 m.

The next step is identifying sequences of minimums
and maximums of the distance function, as shown in
Fig. 2, which could be possible legs patterns. Such points
correspond of course to the angles for which the derivative
of the distance function is null. In practice, to extract such
points from our samples, we consider all the sequences

TABLE I

LEGS DETECTOR ALGORITHM

{filtering}
for i = 1 to LASER DATA SIZE do

d̂i ⇐ filter di with (1)
end for

{pattern recognition}
P ⇐ ® {set of legs patterns}
S ⇐ d̂1 {current sequence}
for i = 2 to LASER DATA SIZE do

if (d̂i is a max.)∨ (d̂i is a min.) then
if d̂i and the last element ofS satisfy (3)then

add d̂i to S
if S contains5 elementsthen

addS to P {new candidate pattern}
end if

else if d̂i is a max.then
S ⇐ d̂i {reset the sequence}

end if
end if

end for

{pattern selection}
for all S ∈ P do

if S does not satisfy (4)then
removeS from P

end if
end for

S = {d̂h, d̂h+1, . . . , d̂h+k} for which:
∣∣∣d̂i − d̂i+1

∣∣∣ < ε

with i = h, h + 1, . . . , h + k − 1
(2)

wherek is the number of consecutive duplets for which
is valid the expression above. Then, we simply take the
point d̂h+k/2 in the middle of the sequence as minimum
or maximum. Note that (2) means we consider all the
segments with inclination less thanε. Although a little
rough, this approximation permits a very fast computation
with a sufficient precision for our task. The valueε must
not be too big, in which case we could miss some local
minimum or maximum, and not too small, thus to avoid
the effect of residual “noise” left by the previous filter. We
found ε = 5 cm to be a good compromise.

The distinction between minimum and maximum is
simply deducted from the fact that one always follows the
other (there cannot be two consecutive minimums!). When
a maximum or minimum is extracted, the algorithm checks
if this contributes to reconstruct a possible legs pattern. In
practice, it tries to identify a sequence of points fromPA to
PB , like shown in Fig. 2, respecting the following vertical
constraints:





d̂PA − d̂PB > Lext

d̂PC − d̂PB > Lint

d̂PC − d̂PD > Lint

d̂PE − d̂PD > Lext

(3)

whereLext = 20 cm andLint = 50 cm in our application.
Finally, a last control is applied to discard improbable

legs patterns, excluding all the cases where the distance
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Fig. 3. Set of Haar-like features for face detection. The total amount
of features contained in a24× 24 window is about120000.

TABLE II

FACE DETECTOR ALGORITHM

if no face trackedthen
min. face size⇐ 20× 20
scan the whole image

else{tracking}
min. face size⇐ 80% of the tracked face
sub-image size⇐ twice the tracked face
scan the sub-imago centered on the tracked face

end if

between two adjacent legs is too big:

‖PD − PB‖ < Dstep (4)

Considering that the laser device is about at forty cen-
timeters from the floor, a good value for such limit is
Dstep = 50 cm. The pseudo-code of the procedure for
legs detection is summarized in Table I.

Thanks to the precision of the SICK laser data, the legs
detector permits to know the position of the surrounding
people with great accuracy. Of course there are cases
where it is almost impossible to distinguish legs from other
objects, for example because of their position with respect
to the robot (e.g. one leg covered by the other) or simply
because the people is too close to a wall. In these situations
the face detector, explained in the next section, plays a
fundamental role.

III. FACE DETECTION

Face detection is a very difficult task because involves
many challenging issues. Some of these are pose, presence
of structural components (like beards, glasses, etc.), facial
expression, occlusions, image orientation and environmen-
tal conditions (e.g. light). In our application we make use
of a recent object detector system [18], which is a refined
version of the broadly known algorithm created by Viola
& Jones [19]. Such system is already implemented and
trained for face detection inOpenCV[21], the computer
vision library we adopted. Compared to the numerous
solutions illustrated in literature [17], the chosen one
shows a good balance between detection performances

Fig. 4. At time t = 0, the whole image320 × 240 is scanned, with
a minimum face size of20× 20 pixel (small gray square on the right).
The bounding box of the detected face (red square) is45× 45.

Fig. 5. At timet = 1, the scan covers only a sub-image90× 90 (blue
square in the previous image), looking for faces not smaller than36×36
pixel (80% of the previous face).

and computational speed. It is also worthwhile specifying
that this method is color independent, therefore adapt for
different skins and more robust to varying light conditions.

Briefly, the face detection algorithm of [18] and [19]
works as follows. Using a cascade of pre-trained clas-
sifiers, it extracts Haar-like features from subwindows
of the image. The set of features is illustrated in
Fig. 3. Each classifier rejects bad input samples operating
a discrimination on the output samples of the previous
classifier. Two important parameters that influence the
speed of the algorithm are the resolution of the image
and the minimum size of the sub-windows, which is the
minimum size of the searched faces.

To increase the performance of our face detection
module, we implemented a simple and fast face tracking
algorithm with an adapting regulation of the parameters. In
practice, at the beginning we scan the whole image, which
is 320×240 in our case. If one or more faces are detected,
we choose the closest one. At the next time step, for the
scan we consider only the sub-image containing the face.
We found a good solution taking a sub-image double the
size of the face. At the same time, we modify the minimal
size of searched faces, setting this parameter to80% of the
current face size. Fig. 4 and Fig. 5 show an example of
how the tracking works.

With this method we obtain two important results:

• First, we increase significantly (~4 times) the face
detection speed, of course provided some face is
actually present;

• Second, we keep track of one face as long as it can



4

Fig. 6. Flowchart of the detection program. The information from the
laser legs detector, more reliable, has the priority on the face detector.

be detected, avoiding cases where the face of interest
changes continuously (e.g. when two faces are at the
same distance and the selection method tries to chose
the closest).

Table II illustrates a simplified version of the algorithm
to detect and track a face. Like the legs detection module
described in Section II, the face detection module can
also return the position of a person with respect to the
robot. Indeed, being known the field of view (FOV) of the
camera, the direction of the person is simply proportional
to the horizontal position of his face inside the image.
The calculus of the distance instead is more complicated
and, in absence of a stereo camera, is normally resolved
using dynamic vision techniques, like depth from motion
[22] or depth from focus [23]. However, these methods
normally require the people to be nearly static, which
is not our case. We chose then a more naive approach,
fast and good enough for our pourposes. To each face
indeed is associated a bounding box (see Fig. 4), the size
of which changes with the distance. We use a simple
conversion factor, determined empirically from the height
of the bounding box at fixed distances of the face. Using
the position of the face in the image and the size of
its bounding box, we can therefore calculate roughly the
location of the person with respect to the robot. Of course,
while the direction is quite precise, the error of the distance
is considerable. Nevertheless, in our experiments it has
been proved to be reliable enough within a range of 2 m,

Fig. 7. ATLAS, the interactive museum guide robot. The test environ-
ment, in this case a wide foyer, has artificial lights, large door-windows
and big movie-screens.

Fig. 8. Scheme of the application that integrates people detection with
the other modules. Each block is a thread, all controlled by the supervisor.

which is the area inside where the human-robot interaction
starts.

IV. H YBRID IMPLEMENTATION

At the current stage, the combination of the two mod-
ules, legs and face detection, is simple but efficient. In
practice, we realized experimentally that the laser based
legs detection is very accurate and in most of the cases
is much more reliable than face detection. Moreover, the
computational time needed by the legs detector is much
less than that one required by the face detection module.
We decided then to give priority to the information coming
from the laser and use the face detection only when the
former does not detect any person. Our choice is supported
also by the fact that the range covered by the laser device is
much wider than the camera view. While the laser covers
a semicircular area with a radius of several meters, the
camera view is limited to approximately40°. Also, even
if the camera is fixed at about 1.5 m from the floor (which
is an average of the people height), there are cases when
a face cannot be detected because the person is too tall or
too short and very close to the robot.

The flowchart of the detection program is illustrated
in Fig. 6. First, the legs detector is interrogated and, if
any person is found, direction and distance of the closest
one are recorded. In case no legs are detected, the control
passes to the face detector and if it succeeds, it provides
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Fig. 9. Approaching a human. In the sequence we can see the detected
face on the left and the relative laser legs detection on the right. ATLAS
stops in front of the human (last snapshot) to start the interaction.

the position of a tracked face. Otherwise the procedure
simply restarts.

Our robot ATLAS is an ActivMedia PeopleBot equipped
with a SICK laser range sensor, a PTZ camera, audio
system and a touch-screen (see Fig. 7). The on-board
computer is a Pentium III 800 MHz with 256 MB of
memory, running Linux operating system. The camera has
been mounted on a special support to increase the height
of its view, which is now about 1.5 m. This permits in
general better performances when detecting faces.

The software has been realized with a modular ap-
proach. The legs and the face detectors have been thought
as “virtual” devices that can independently return direction
and distance of detected people. Such detectors are part of
a library that can be expanded with additional functional-
ities (e.g. motion or sound detectors).

Furthermore, the detection thread is part of a more
complex application that involves navigation, conversation
and web-interface, thus to provide a full interactive robot
guide. In Fig. 8 we can see a scheme of the whole
application. Every module is an independent thread, the
main one being the supervisor, which controls all the
others using a FSM approach. A thread is also dedicated to
the sensors, keeping the data up-to-date and synchronizing
the access to the input devices.

More in detail, the detection module provides the nav-
igation with the position of humans and leaves it the
task to approach them avoiding obstacles. The detection
also informs the conversation module on the presence
of people, so that the latter can attract them or start an
interaction when close enough. At this stage, the web-

Fig. 10. Person too close to the wall. The legs pattern searched with
a laser scan, on the right, can be confused with other objects in the
environment. The face detector helps to resolve the confusion.

Fig. 11. Legs too close to each other. Instead of two columns, the laser
shows just one big column. Even in this case, the face detector helps to
resolve the ambiguity.

interface is also available to show visual information to
the user or get input through the touch-screen.

V. EXPERIMENTAL RESULTS

Most of the experiments have been conducted in a
corridor and a foyer of the County Hall in London.
The environment is a very good test-bed for interactive
robots like ATLAS. First of all, the wide space permits
several people to interact with the robot at the same
time. Furthermore, the light condition is very challenging
because varying from artificial to natural illumination.
Fig. 7 shows part of the wide foyer.

A. Example of approach

In the first experiment, we report a successful approach
achieved by ATLAS using both laser and vision data. In
Fig. 9 we show a sequence of three snapshots taken during
a human approach. Both face and legs are continuously
tracked while the robot is moving toward the person
approximately at 30 cm/s. The update speed of the legs
detection module, about 6 Hz, is limited only by the
hardware and the Operating System. Of course, due to
image processing, the speed of the face detector is lower,
in average 3 Hz. When it reaches a person at a proper
distance for interaction, the robot stops (last snapshot of
the sequence). We can also note that, during the second
and third time-steps, the laser detects another person on
the left, who is not visible from the camera.

B. Failure of the legs detector

Most of the times the laser is sufficient to detect a
person. However, there are cases for which it is impossible
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Fig. 12. Approaching a moving human. ATLAS detects a person who is
walking and getting closer. Therefore it turns right and approaches him
for interacting.

to distinguish and recognize legs in the environment. In
this section we show a couple of typical examples where
the legs detector fails but, thanks to the integration with the
face detection, the robot is still able to identify a human.
In Fig. 10 we can see a situation where the person to
approach is too close to a wall, so that the legs pattern
is not clearly identifiable. In particular, such pattern is
discarded by the constraints (3) and (4) given in Section
II. In Fig. 11 instead the legs are too close to each other,
looking like a single column (this could easily happen also
if the person is a lady with a long skirt).

C. Approaching a moving human

Often people are not just statically waiting for the robot
to reach them, but prefer to move towards it looking
for some interaction. We show that ATLAS can actually
handle this kind of situations and approach humans even
when they are walking to get close. In Fig. 12 there is an
example where a person, on the right side of the robot, is
walking torwards it. ATLAS detects the human legs using
the laser, then it turns and starts to approach the person,
who in the meanwhile is getting closer and closer. Finally,
they both stop in front of each other at a proper distance
to start the interaction.

We must point out that, during most of the action, the
face is out of the camera view, so the laser is the only
device ATLAS can rely on. Eventually, when the person is
approximately in front of the robot, the face detector could
also help the tracking. This suggests that an additional pan-
tilt control of the camera would be preferable.

Fig. 13. Approach and interaction. In the sequence, ATLAS detects the
person and approaches him (frame 1-3). After that, they interact using
speech and the touch-screen (frame 4-5). Finally, when the interaction
terminates, ATLAS turns and moves away (frame 6).

D. Interaction

The main task of ATLAS is to welcome the visitors
entering the County Hall’s foyer. This consists in detect-
ing and approaching the people, greeting them and, if
they desire, providing them with some useful information
about the current exhibition. The interaction can last
from a few seconds to a few minutes, depending on
the interest of the user. To communicate, ATLAS shows
HTML pages synchronized with speech, getting feedback
from users through simple yes/no answers and with the
touch-screen. In Fig. 13, we show a complete sequence
of detection, approach, interaction and leave. The video
with this and other performances is available online at
http://privatewww.essex.ac.uk/~nbello.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel human detection system
that integrates the information coming from a laser legs
detector and an visual face detector. The way to recognize
a typical human legs pattern from range information
and how to speed up the face detection with tracking
are explained. The results show that the system can be
successfully used on a mobile robot to interact with people
in real time.

In our future work we would like to use the pan-tilt
movement of the camera to track people while the robot is
moving. Probability methods will be investigated in order
to improve the robustness and fault tolerance.
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